Image Recognition Using Unsupervised Learning Based Automatic Fuzzy Clustering Algorithm

Thạc sĩLê Thị Kim NgọcVV. Tai

Khoa Kỹ Thuật

Thể loại: Kỷ yếu

Sơ lược nội dung

This article proposes a novel techniques for unsupervised learning in image recognition using automatic fuzzy clustering algorithm (AFCA) for discrete data. There are two main stages in order to recognize images in this study. First of all, new technique is shown to extract sixty four textural features from n images represented by a matrix n ´ 64. Afterwards, we use the proposed method based on Hausdorff distance to simultaneously determine the appropriate number of clusters. At the end of the unsupervised clustering process, discrete data belonging to the same cluster converge to the same position, which represents the cluster's center. After determining number of cluster, we have probability of assigning objects to the established clusters. The simulation result built by Matlab program shows the effectiveness of the proposed method using the corrected rand, the partition entropy, and the partition coefficients index. The experimental outcomes illustrate that the proposed method is better than the existing ones as Fuzzy C-mean. As a result, we believe that the prop.

Thông tin chung
Thể loại
Kỷ yếu
Năm xuất bản
02 Thg12 2020
Ngôn ngữ gốc
Tiếng Anh

Tài liệu tham khảo

Để đọc toàn văn của bài báo này, bạn có thể yêu cầu một bản sao đầy đủ trực tiếp từ các tác giả.