Automatic clustering algorithm for interval based on overlap distance

Thạc sĩLê Thị Kim NgọcTuan Le Hoang, Tai Vo Van

Khoa Kỹ Thuật

Thể loại: Bài báo

Sơ lược nội dung

In this study, the improved overlap distance is used as a criterion in order to build clusters for interval data. This distance has shown the suitability, and given an outstanding advantage in evaluating the similarity for intervals with a lot of the considered data sets. Based on the overlap distance, we propose the Automatic Clustering Algorithm for Interval data (ACAI). One of the best advantages of the proposed algorithm is that ACAI figure out simultaneously the appropriate number of groups, and factors in every group. The proposed algorithm can be effectively performed through a Matlab procedure. Based on the extracted intervals from texture of images, we have applied ACAI to recognize the images, an interesting and challenging issue at present. Experimental data sets including the differences of the characteristics as well as the number of elements has shown the reasonableness of the proposed algorithm, and its advantages in comparing to the surviving ones. From the image recognition problem, this research has shown prospect in practical applications for many fields.

Thông tin chung
Thể loại
Bài báo
Năm xuất bản
18 Thg3 2021
Ngôn ngữ gốc
Tiếng Anh
Tạp chí công bố
Communications in Statistics Part B: Simulation and Computation
Loại tạp chí
Danh mục Scopus
Mã ISSN
0361-0918
Chất lượng
Q2

Tài liệu tham khảo

Để đọc toàn văn của bài báo này, bạn có thể yêu cầu một bản sao đầy đủ trực tiếp từ các tác giả.