Evaluation for half-lives in the α -decay chains of $^{309-312}126$ based on semi-empirical approaches

N. D. Ly¹, N. N. Duy^{2,3}‡, K. Y. Chae³, Vinh N. T. Pham⁴ & T. V. Nhan-Hao⁵

- ¹ Faculty of Fundamental Sciences, Vanlang University, Ho Chi Minh City 700000, Vietnam
- ² Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- ³ Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea
- 4 Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City 700000, Vietnam
- ⁵ Faculty of Physics, University of Education, Hue University, 34 Le Loi Street, Hue City 530000, Vietnam

E-mail: nguyenngocduy9@duytan.edu; ngocduydl@skku.edu

16 December 2020

Abstract. In this paper, we estimated half-lives using semi-empirical formulae for isotopes with Z=100-126 in four α -decay chains, which can appear in the syntheses of the 309-312126 nuclei. The spontaneous fission half-lives were calculated using the Anghel, Karpov, and Xu models, whereas the α-decay ones were predicted using the Viola-Seaborg, Royer, Akrawy, Brown, modified formulae of Royer, Ni, and Qian approaches. We found that there are large differences among the spontaneous fission half-lives estimated using the Xu model and those calculated using the others, which are up to 50 orders of magnitude. The α -decay half-lives also have large uncertainties due to difference in either methods or uncertainties in nuclear mass and spin-parities. Subsequently, there is an argument in determination of α -emitters, especially for the $^{312}126$ isotope. On the other hand, the α -decay half-lives are in the range from a few microseconds (309-312126) to thousands of years (257-260Fm) in the decay chains. It was found that the half-lives are very sensitive to not only the shell closure but also the angular momentum in the α decay. For experiments, with relatively long half-lives (a few milliseconds), the ^{289–292}Lv isotopes can be observed as evidences for syntheses of the unknown super-heavy 309-312126 nuclei. Furthermore, measurements for precise mass, fission barrier, and spin-parity are necessary to improve accuracy of half-life predictions for super-heavy nuclei.

Keywords: super-heavy nuclei, alpha decay, spontaneous fission, fission barrier, half-life

[‡] Corresponding author