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Abstract
Background  High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching 
of neighboring images, which often requires short working distances. Separately, the image processing community has 
developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images.
Objective  This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method 
to produce high-resolution full-field strain measurements.
Methods  First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms 
to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- 
and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and 
super-resolution images are compared.
Results  SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate 
the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation 
when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements 
of ring deformation.
Conclusions  Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial 
resolution, reduced error, and increased measurement confidence.

Keywords  Digital image correlation · Super resolution · High magnification · Strain

Introduction

Digital Image Correlation (DIC) is a non-contacting tech-
nique used to examine localized strain across a material’s 
surface [1]. By comparing images of a sample before, dur-
ing, and after load application, DIC can calculate surface 
deformation and strain at any point which is visible to cam-
eras. This method allows for measurements to be taken at 
a variety of length scales without a loss of quality in the 
measurement for different physical scales [2].

Although many physical length scales can be used, the 
resolution of the images used to compute deformation 
remains a limiting factor for DIC measurements. DIC can 
detect sub-pixel magnitudes of displacement [3], but the 
measurements are computed using subsets of pixels, thus 
averaging each ‘pointwise’ displacement measurement over 
the area of each subset. In addition, strains are computed 
from multiple subset displacements, averaging the strain 
measurement over an even larger area [4] and causing unde-
sirable spatial ‘smoothing’ of measurements [5]. Due to the 
number of pixels necessary for a single strain data point, 
the physical size of the subsets used has a direct impact 
on the spatial smoothing of the measurement. To maximize 
the benefits of the full-field measurements from DIC com-
pared to single averaged measurements from strain gauges, 
higher resolution images allow for smaller physical subset 
sizes which produce each “pointwise” measurement. This 
is especially true when it is necessary to perform DIC over 
small regions of interest.
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To address the need for improved spatial resolution, some 
researchers have improved image resolution by removing a 
sample from an experiment’s controlled environment to take 
DIC images under an optical microscope before and after 
deformation [6]. Similarly, even higher-resolution DIC images 
have been captured with a scanning electron microscope 
(SEM) [7, 8]. Such microscopy techniques enable measure-
ments at the nanometer length scale, improving the spatial res-
olution. However, this added resolution in a single image often 
comes with a reduced field of view. To overcome the issue of 
small fields of view, images with adjacent fields of view can 
be stitched together to create one single image. At the optical 
scale, researchers have stitched together multiple images from 
optical microscopes in order to compare DIC results with grain 
microstructure [9, 10]. Stitching has also been demonstrated at 
the SEM scale, [11, 12], allowing even higher resolutions. The 
result is higher spatial resolution, with DIC subset covering 
smaller physical areas, while capturing large fields of view.

However, such high-resolution, large field-of-view methods 
face two key limitations. First, microscopy-based experiments 
must either be (a) conducted under operating conditions that 
are survivable by the imaging equipment or (b) performed ex-
situ, removing the sample from the experiment’s environment. 
At room temperature, specialized SEM setups have been devel-
oped that allow in-situ images [13–15], whereas high-temper-
ature applications have traditionally utilized ex-situ measure-
ments [16]. The second limitation stems from the working 
distance. Previous experiments have been performed using 
microscopes that have very short working distances, making 
stitching ill-suited for environmental chambers and long-range 
optics. High-magnification imaging with low-resolution cam-
eras in specially-fitted has facilitated in-situ DIC of small fields 

of view at elevated temperatures, but requires a specially fitted 
optical microscope heating stage [17]. Similarly, long-range 
optics have allowed for high-resolution DIC measurements in 
environmental chambers, but without accommodation for large 
fields of view [18]. However, the challenge remains that high-
magnification in-situ measurements with full fields of view are 
limited by working distance of the optics.

As an alternate approach, Super Resolution (SR) imag-
ing techniques may produce images of sufficiently high 
resolution while maintaining larger fields of view and long 
working distances. Super resolution is a post-processing 
technique to combine multiple overlapping low resolution 
(LR) images to produce a high resolution (HR) image in 
a region common to all images [19]. Image stitching and 
SR are compared schematically in Fig. 1. While both pro-
cesses are shown to yield similarly increased resolution, 
image stitching is often done ex situ (or occasionally under 
an environmental microscope), whereas SR could theoreti-
cally improve the process by allowing the LR images to be 
taken in situ and at longer working distances (although the 
HR images still require post-processing).

This super resolution post processing of images has been 
a growing field over the last several decades. The basic prin-
ciples were initially studied as early as 1974 as a mathemati-
cal method to improve images beyond resolutions otherwise 
limited by the diffraction limit of light, and reduce effects of 
blurring in images [20]. In 1984, Tsai and Huang first applied 
some of these principles for creating higher-resolution 
images from multiple frames [21]. Early applications ranged 
from improving resolution of emission spectra images in 
biochemistry [22] to overcoming the quality-reducing effect 
of atmospheric turbulence in telescopes [23]. As potential 

Fig. 1   The stitching method 
and SR method are both used to 
obtain an HR image for a given 
area of interest
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applications for super resolution imaging surfaced, com-
puting ability also improved, leading to several advances in 
SR taking place in recent years. Emerging applications in 
other fields include retinal imaging [24], other telepathology 
[25], and improved smartphone cameras [26]. In the case of 
smartphones, SR techniques have allowed camera resolution 
to approach that of traditional cameras such as DSLRs by 
overcoming current sensor, pixel, aperture, and other hard-
ware limitations. Some variations of super-resolution pro-
cesses use the techniques to improve a single low-resolution 
or blurry image [27], compared to traditional applications 
which use multiple images with overlapping fields of view to 
improve accuracy [28]. Among the newest advances in super-
resolution are the utilization of machine learning, comparing 
known low- and high-resolution image pairs to train super-
resolution algorithms [29], demonstrating the expanding set 
of potential applications.

While principles of super resolution have been solving 
a variety of problems for years, SR has yet to be applied 
in the field of experimental mechanics. This paper demon-
strates the potential application of super resolution imaging 
to improve high-magnification DIC measurements using 
open-access SR software. The three techniques featured 
in this software and examined in this research are Robust 
Super Resolution [30], the Papoulis Gerchberg method 
[19, 31], and Structure Adaptive Normalized Convolution 
[32], the merits of which are discussed in the theory section 
below. The algorithms are evaluated for their effectiveness 
to perform DIC: first qualitatively, by reconstructing a sam-
ple image and comparing the quality of each visually; then 
quantitatively, by rigid body displacement and deformation 
measurements. The quantitative SR tests are then compared 
with unprocessed LR results to demonstrate the improve-
ments in high-magnification DIC due to the SR resolution.

Theory

There are two common processes which are essential to all 
super resolution (SR) algorithms: 1) identifying position of 
each low resolution (LR) image with respect to one common 
high resolution (HR) reference grid and 2) projecting LR 
pixels onto the grid [19]. Figure 2(a) shows schematically a 
set of 4 LR pixels on a small section of the HR grid. The LR 
pixels are numbered 1–4, while the HR pixels are lettered 
A-D. Because each LR image has some displacement Δx 
and Δy with respect to the HR grid, the SR algorithm must 
determine which LR pixels will influence a given HR pixel. 
In Fig. 2(a), an HR pixel is shown to be influenced by up to 
four LR pixels from just a single image. For example, HR 
pixel A is entirely contained within LR pixel 1; HR pixel B 
lies partially within LR pixels 1–2; while HR pixel D lies 
partially within all four LR pixels 1–4. Because there are 

often several LR images input into a SR algorithm, many LR 
pixels are used to create a single HR pixel. Figure 2(b) shows 
schematically the same 4 h pixels projected onto a second 
LR grid with pixels numbered 5–8. For example, pixel A 
is entirely contained within pixels 1 and 5 and would thus 
weight both pixels evenly; while pixel B has larger propor-
tions within pixels 2 and 5 than within pixels 1 and 6, and 
would thus weight pixels 2 and 5 more heavily. The specific 
processes of these two steps, as well as a description of the 
algorithms used to accomplish these steps, are described 
below.

Step 1: Position Registration Between LR and HR

The first challenge in super-resolution computing is placing 
multiple LR images onto a common grid. To take advan-
tage of information from multiple images, the images must 
necessarily be unique from each other. This is often due to 
some small translational displacement between the camera 
position in the capture of the image [33], but it can also be 
caused by lens distortion or other deformations caused by 
the camera and lens system [34]. To reconcile all images, 
these camera displacements between a chosen first image 
and subsequent images must be estimated with sub-pixel 
accuracy. Those relative displacements then allow the posi-
tion of each image to be registered on the common grid or 
framework for the SR image.

There are several algorithms to accomplish this step of 
position registration. Early efforts used a transformation to 
the frequency domain, where translations in the horizontal 
and vertical direction can be estimated by frequency phase 
shifts [21, 35]. Such methods assume global motion occurs 
for the entire field of view, which is a potential disadvantage 
for images whose subjects undergo non-uniform deformation 
[36]. Several additional techniques have been implemented 
to improve their performance of such methods. These 
include extracting rotation information from the phase shifts 
[35], as well as avoiding aliasing by using low-frequency 
parts of the image [37]. A more recent algorithm, proposed 
by Vandewalle et al. [38] uses this Fourier transform on the 
image to identify translation on subsequent images when 
compared with an initial image. This algorithm combines the 
robustness against aliasing from frequency filtering with the 
ability to capture rotations as well as linear displacements 
from the phase shifts and amplitudes.

Other methods remain in the image spatial domain, 
rather than the frequency domain [39]. One of the foun-
dational spatial domain algorithms was developed by 
Keren [40]. It utilizes Taylor expansions to estimate pla-
nar motion between images, based on the parameters of 
rotation and vertical and horizontal shifts. The algorithm 
then seeks to minimize the error of the approximation, 
solving a set of linear equations to find the shift and 
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rotation parameters. This is an iterative method, adding 
the parameter solutions to the system of linear equations 
and resolving until it converges sufficiently. In order to cut 
down on computation time, the algorithm uses a ‘Gaussian 
pyramid’ scheme, which focuses first on a coarse down-
sampled image, and then a progressively finer down-
sampled image until the full image is used. Other spatial 
domain methods have been developed which can account 
for other motion models such as segmented and temporal 
motion [41]. Algorithms have also been developed which 
estimate the rotation first, then correct the rotation before 
estimating spatial shifts [42].

Both the spatial and frequency-based registration algo-
rithms return rotation and shift parameters. These shifts, 
with sub-pixel accuracy, allow all LR images to be placed 
on a common reference grid. Once these shifts have been 
estimated, the pixel information from the LR images can 
then be used to construct the SR image [38]. Of the meth-
ods discussed, Keren’s is used through the rest of this 
paper.

Step 2: Combining Multiple LR Images into a Single 
SR Image

After positioning all LR images on common coordinates, the 
overlapping information from the LR pixel sets must be pro-
cessed and combined into a single SR pixel set. Several algo-
rithms have been developed to accomplish this reconstruc-
tion. They have some common features, yet they also vary in 
complexity. A comparison of the features of four algorithms 
is included in Table 1. They are fairly representative of SR 
capabilities and provide a framework with which to analyze 
the application of SR imaging for DIC measurements.

One of the earliest SR techniques to create a high-resolution 
grid from projected low-resolution pixels is Iterated Back Pro-
jection (IBP). The goal of IBP is to construct a SR image that, 
when deconstructed into LR images, best reproduces the orig- 
inal LR set [43]. The SR image is obtained iteratively from  
an initial guess featuring a grid of SR pixels with the same  
resolution and placement as the desired SR outcome. After  
each iteration, the SR image is deconstructed by averaging 

Table 1   Comparison of SR reconstruction algorithm features

Iterated Back Projection 
(IBP)

Robust Super Resolution 
(RSR)

Papoulis-Gerchberg (PG) Structure Adaptive Normal-
ized Convolution (SANC)

Reconstruction Type Initial pixel guess, down-
sample to LR and iterate

Initial pixel guess, down-
sample to LR and iterate

Populate known pixels and 
fill in gaps with interpola-
tion

Predicts original signal by 
deconvolving pixels and 
preserves shape influence 
of pixels on neighbors

Noise Treatment No significant treatment Medians and outlier identi-
fication

Fourier Transform, Low-pass 
filtering

Outlier identification, 2nd 
pass to adapt convolution 
parameters

Fig. 2   (a) LR pixels (1, 2, 3, 
4) have a displacement of Δx 
and Δy with respect to the 
HR grid pixels (A, B, C, D), 
which allows registration on 
the common HR grid, and (b) 
Pixels from an LR image (1, 2, 
3, 4), overlapping with pixels 
from another LR image (5, 6, 7, 
8) are both used to inform the 
same HR pixels (A, B, C, D)
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groups of SR pixels together based on (1) the size of SR pixels 
with respect to a LR pixel, (2) the diffraction pattern of a single 
point, transmitted to the image plane on the sensor (the point 
spread function)[44], and (3) the distance between each SR pixel 
and the LR pixel being influenced. A simple example, without 
consideration of the point spread function, is demonstrated in 
Fig. 2(b): HR pixel A lies entirely within LR pixel 1 and thus is 
weighted entirely in the average; whereas HR pixel D is only ¼ 
within LR pixel 1 and is thus weighted by ¼. Once deconstruc-
tion of a HR estimate is complete, the original and deconstructed 
LR images are compared to update the HR result as informed 
by considerations (1)-(3). This process is iterated until the simu-
lated LR images converge with the original LR images within 
an acceptable error.

One of the shortcomings of the IBP method is oversen-
sitivity to noise. In the algorithm, when the normalized 
average of the LR pixels is taken, there is no significant 
mechanism to address issues of noise. To respond to this, 
the Robust Super-Resolution (RSR) algorithm uses a median 
estimator, rather than an average [30]. This makes the algo-
rithm more robust against noise outliers. The result is an 
algorithm that builds on IBP by addressing the significant 
drawback of high sensitivity to motion blur or high noise. 
Because RSR is itself a direct improvement upon IBP, only 
RSR is considered through the rest of this paper.

Similar to IBP and RSR, the Papoulis-Gerchberg (PG) 
algorithm works through iteration [19]. For its initial guess, 
any SR pixel which lies entirely within one LR pixel is given 
the same value as the LR pixel. Any SR pixels which span 
multiple LR pixels are initially set equal to zero [31]. After 
known values are assigned, extrapolation between known 
pixel values is performed using signal processing techniques 
developed by Papoulis and Gerchberg [45]. This extrapo-
lation is an iterative process of alternate projections and 
begins by transforming the image signal from the spatial to 
the frequency domain. The spectral signal goes through a 
low-pass filter, and the signal is then transformed back to the 
spatial domain. This new, extrapolated signal is then added 
to the original known signal, and the transformation and 
filtering is iterated. Each iteration reduces the mean square 
error of the extrapolation, and eventually the iterations will 
converge. The result is a noise-reduced SR image.

Finally, Structure Adaptive Normalized Convolution 
(SANC) is a response to the need to pick up underlying 
directional textures in the image, such as lines and curves. 
SANC works by assuming that LR images are blurred by a 
Gaussian convolution [32], meaning that a pixel is assumed 
to be influenced by pixels which lie close to it. Many SR 
algorithms (including IBP) assume Gaussian blur, which 
they refer to as a point spread function [4]. SANC is unique, 
however, because it considers image structure when assum-
ing a Gaussian blur and it accounts for signal certainty. 
Image structure is considered for every pixel in the use of a 

gradient structure tensor. The gradient structure tensor deter-
mines if a pixel lies along a line in the image. Normalized 
averaging similar to IBP is performed, but it is improved 
by using information from the gradient structure tensor and 
accounting for signal certainty in a similar way to RSR. 
SANC uses both methods to limit the effect of noise and 
accurately predict shape structure when performing SR.

Methods

To assess the usefulness of SR computing in improving spa-
tial resolution in DIC, three of the algorithms are used in 
several separate tests: RSR, PG, and SANC. In the first test, 
a qualitative comparison is performed in which an image 
is downsampled and then reconstructed using the SR algo-
rithms, to demonstrate the advantages and disadvantages of 
each algorithm. The second test evaluates the pairing of SR 
and DIC in comparing applied and DIC-measured rigid body 
translation of a patterned specimen. The third test consists 
of a mechanical test which produces a non-uniform strain 
field, to compare LR and HR images and their effectiveness 
in DIC strain measurements.

SR Algorithm Initial Comparison

An initial test determined the accuracy with which each 
SR algorithm could recreate an existing HR image. A test 
image, shown in Fig. 3, was chosen which contains 3 impor-
tant features: a) familiar shapes, b) straight edges, and c) 
areas of repetitive texture. This highlights the ability of each 
SR algorithm to reproduce those features. These abilities 
help to inform the practicability of using these algorithms 
for DIC-based strain measurements.

Using super resolution imaging software developed and 
made publicly available by Vandewalle et al. [38], the HR 
test image is deconstructed into nine overlapping LR images. 
First, nine copies of the HR image are created, shifting all 

Fig. 3   Test image (representing HR image) used for qualitative com-
parison by down-sampling and reconstructing using SR
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but the first by random x and y displacements, ranging from 
-4 to 4 h pixels in 0.125 h sub-pixel increments. Next, each 
of the 9 h images are converted to LR images, downsampling 
by averaging each 2 × 2 group of HR pixels into a single 
larger LR pixel. In pixels which shift beyond the edge of the 
initial image, pixels outside the edge of the shifted region 
of interest retain their original values. Since each LR pixel 
summarizes data from 4 h pixels, the overall size of the LR 
image is reduced to a quarter of the HR image. The 9 LR 
images are then run through each of the chosen SR algo-
rithms, using the software from Vandewalle, with an interpo-
lation factor of 2, meaning that each dimension of the image 
is increased by a factor of 2. Thus, each LR pixel covers the 
same physical area as a 2 × 2 set of SR pixels. The result of 
the test is one SR image for each algorithm which could be 
compared to the HR image of the same resolution and field 
of view. This process is depicted in Fig. 4. Visual inspection 
rather than numerical interpretation is used for comparison, 
as is widely done in comparing SR algorithms [46].

Rigid Body Translation Test

As a first introduction of SR imaging in DIC measurements, 
SR images were used as input images to measure a known 
translation. First, a micrometer-driven translation stage was 
positioned vertically as shown in Fig. 5, holding a small 
T-316 stainless steel ring sample, with outer diameter of 
12.7 mm and wall thickness of 1.2 mm. A speckle pattern 
was applied to the ring with black paint on a white back-
ground. A Basler 15 MP camera was attached to a second 
vertically positioned translation stage, allowing controlled 
offsets of the image to produce overlapping LR fields of 
view. These stages were separated to allow a 290 mm work-
ing distance between the end of a 25 mm lens and the ring 
sample, representative of distance requirements for view-
ing through an environmental chamber. The specimen was 
illuminated by Cole-Parmer fiber optic lights. The camera’s 
field of view, including the speckled ring, is shown in the 
right of the figure.

A series of images were then taken of the specimen as 
summarized in Table 2. After focusing the lens on the ring 
sample, 9 reference images were taken at differing camera 
positions, followed by 9 noise images. The camera position 
varied from ± 0.0254 mm in both the vertical and horizontal 
directions and was centered about zero. The ring sample 
was then translated 0.127 mm in the vertical direction, and 
9 images were taken in the same manner. This process was 
repeated up to a final ring sample translation of 0.762 mm. 
Prior to super resolution post-processing, each LR image 
was cropped to the same size (1500 × 1644 pixels) to still 
capture the ring along with applied translation, while reduc-
ing computation time. The result was a set of images for each 
algorithm which included a single image at every translation 
of the ring.

For each set of 9 LR images, the same SR software 
used in the initial comparison test was used to produce 3 
SR images. For all 3 SR images, the step 1 image regis-
tration was again performed using the Keren registration 
algorithm. Step 2 was then performed using the Robust 

Fig. 4   Method for visual comparison between super resolution algo-
rithms including down sampling scheme

Fig. 5   Rigid Body Translation 
test setup. Translation stage 
with the camera and lens (left) 
was moved in both vertical and 
horizontal directions to capture 
9 images, while speckled 
ring translation stage (right) 
was translated in the vertical 
direction to produce rigid body 
motion. Camera field of view, 
focused on the ring, is shown at 
the right
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Super Resolution (RSR), Papoulis-Gerchberg (PG), and 
Structure-Adapted Normalized Convolution (SANC) algo-
rithms, respectively, with an interpolation value of 2. The 
SR images produced by each of the RSR, PG, and SANC 
algorithms were then imported into VIC-2D [47], a commer-
cial DIC algorithm which is widely used in the experimental 
mechanics community. Correlation was performed using a 
subset size of 49 pixels and a step size of 5 pixels to obtain 
full field displacements. For comparison, a set of images 
consisting of one LR image from each displacement was 
also imported into VIC-2D. A subset size of 25 pixels and 
step size of 3 pixels was used for the LR measurement, such 
that a comparable physical area in mm would be represented 
by each LR and SR subset. The displacements were then 
plotted against the known applied displacements to assess 
how closely each of the SR methods can reproduce a known 
translation, and to compare SR-DIC results to traditional 
LR-DIC measurements.

As a comparison tool, two additional images sets were 
produced: One LR image set made by averaging the nine LR 
images to combat noise (referred to as LR Average), and one 
HR image set which expands the single LR Average image 
by a factor of 2 through cubic interpolation (referred to as 
HR Interpolation). To produce the LR Average image set, 
the LR images were first shifted by the x and y offsets found 
with the Step 1 Keren algorithm in order to register on a 
common grid, then averaged together. Expanding each LR 
Average image by a factor of 2 through bicubic interpola-
tion, then, provides a benchmark to compare the RSR, PG, 
and SANC algorithms against. Both the LR Average and HR 
Interpolation image sets were prepared and imported into 
VIC-2D for DIC measurement.

After preparing displacement data, further analysis on 
the accuracy of the measurement was performed, investigat-
ing the effect of subset size on the spatial standard devia-
tion of the displacement measurement, as subset size has 
a significant impact on the correlation accuracy [48]. For 

each algorithm, the analysis was first performed at the sub-
set sizes described in the methods Sect. (49 for SR, 25 for 
LR). Smaller subset sizes were investigated, moving down 
in increments of 4 pixels for SR (45, 41…) and of 2 pixels 
for LR (23, 21…) to maintain similar physical subset sizes. 
This reduction in subset size continued until the images no 
longer correlated, thus exploring the lower limit of subset 
size for each algorithm. Similarly, subset sizes larger than 
the sizes of 49 and 25 were investigated in increments of 8 
pixels for SR (57, 65…) and 4 pixels for LR (29, 33…) up 
to a size of 97 or 49 pixels. For every subset size, the same 
step size was maintained (5 for SR, 3 for LR) to preserve a 
similar number of total subsets.

Mechanical Deformation Test

To study the full implementation or SR imaging into DIC 
strain measurements, SR techniques were then used in a 
mechanical deformation test. The same ring specimen from 
the rigid body translation test was placed in a Gleeble 1500D 
load frame with an environmental chamber. The same cam-
era and lens as before were aimed at the specimen through 
the chamber viewing window from a working distance of 
330 mm. In addition, a Qioptic Optem Fusion zoom lens was 
used with a second Basler 15 MP camera and focused on a 
portion of the ring. The variable magnification of the zoom 
lens was adjusted to produce a field of view roughly 15 times 
smaller than the LR lens in order to provide a more accurate 
‘high resolution’ image with which to compare the super 
resolution images. Custom grips were designed to apply a 
tensile load on the inner surface of the ring, as shown in 
Fig. 6.

The grips were slowly moved apart until a small increase 
of force was registered by the load cell, indicating that both 
grips had come into contact with the inside face of the ring. 
From this zero-displacement location, a set of 9 images was 
then captured in succession, to be combined later to produce 
a single SR reference image. Several seconds passed between 
each of the 9 images to allow for small random offsets of the 
field of view caused by vibration of the load frame. Another 
set of 9 images was then captured to provide a noise meas-
urement. The grips were then moved apart under displace-
ment control in increments of 0.1 mm, causing a non-uniform 
strain distribution in the ring. At each displacement incre-
ment, another set of 9 images was captured. This process of 
grip displacement followed by image capture continued until 
a final net grip displacement of 1.4 mm was achieved.

Upon completion of the mechanical deformation, each 
set of 9 LR images was combined using the three SR 
algorithms. Then, the sets of SR images were imported 
in VIC-2D and correlated with a subset size of 49 and 
step size of 5. Similarly, one of the 9 LR images at each 
displacement was imported and correlated with a subset 

Table 2   Image capture scheme for Rigid Body Translation test, show-
ing LR images taken and SR images processed at each displacement

Image Set Ring Displacement LR Images
(1500 × 1644)

SR Images
(3000 × 3288)

1 0 mm (reference) 9 images 1 RSR, 1 PG, 1 
SANC

2 0 mm (noise) 9 images 1 RSR, 1 PG, 1 
SANC

3 0.127 mm 9 images 1 RSR, 1 PG, 1 
SANC

… … 9 images 1 RSR, 1 PG, 1 
SANC

8 0.762 mm 9 images 1 RSR, 1 PG, 1 
SANC
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size of 25 and a step size of 3, allowing similar physical 
areas to be represented by each subset. The zoom lens 
images were also imported and correlated with a subset 
size of 151 and step size of 5. Strain maps were generated 
and compared for each of the SR methods and for the LR 
image set. A subset size-match confidence analysis was 
performed for the mechanical deformation test, following 
the same process used for the rigid body translation test.

Results

The comparison of the three chosen SR algorithms to LR 
imaging techniques is supported by the results of the three 
tests: The SR algorithm initial comparison, the rigid body 
translation test, and the mechanical deformation test. These 
results are summarized below.

SR Algorithm Initial Comparison

Figure 7 shows the results of the deconstruction and recon-
struction of an image, meant to highlight similarities and dif-
ferences between the SR algorithms. The original HR image 
depicting a “one-way” traffic sign in front of a background 
of trees and sky is shown in part (a); an enlarged section 
is shown in part (b). The same section of the LR image is 
shown in part (c), and the three SR versions of the section 
in parts (d), (e), and (f). A comparison of the HR and LR 
images shows that the words on the sign are blurred but still 
readable in the LR image. The straight edges of the sign have 
also become jagged due to pixel averaging, along with some 
loss of definition in the leaves in the background.

The results of the SR image reconstruction are given in 
Fig. 7(d), (e), and (f). The RSR algorithm slightly improves 
upon the LR image quality in regions of texture, but it also 

Fig. 6   Mechanical test setup, 
showing (a) optical setup, 
including camera, lens, and 
light source, pointed through 
the chamber window at (b) the 
ring sample on the grips within 
the Gleeble 1500D load frame

a) b)

Fig. 7   The HR and LR images 
are shown along with the results 
from all three SR algorithms
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makes some features worse. For example, the leaves recap-
ture some of their sharper colors, but the straight edges of 
the sign are visibly noisy and grainy. In the PG image, the 
shape of the letters are clearer than in the RSR and compa-
rable to the LR, with sharper corners. However, the lines 
still have a more jagged appearance, with the diagonal lines 
appearing instead as long ‘steps’. The opposite is true in the 
SANC image, where several features are more smoothed 
over. This improves the quality of some features, such as the 
straight edges losing some of the jagged ‘steps’. However, 
it also worsens other features, as the corners of letters are 
less sharp than in PG. Overall, the SR images are generally 
clearer than the LR image, but they fall short of perfectly 
replicating the HR image.

The visual similarity between the original HR image and 
the reconstructed SR images can be compared using a metric 
developed by Wang et al. called structural similarity [49]. 
The structural similarity (SSIM) index is a quantification 
of the perceived similarity between two images of the same 
resolution, scaled between 0 (no similarity) and 1 (perfectly 
similar). Using a publicly available MATLAB implemen-
tation of the SSIM algorithm [49], the grayscale versions 
of the images were compared against each other. The indi-
ces for the super resolution images, compared against the 
original HR image, were 0.5678 for RSR, 0.6047 for PG, 
and 0.7663 for SANC. These results show the best score for 
SANC, with lower scores for PG and RSR.

Rigid Body Translation Test

Figure 8(a-d) shows the average vertical translation meas-
ured across all subsets of the ring sample for each LR and SR 

method as a function of the applied translation. Uncertainty 
bands of three standard deviations of the displacement of all 
subsets at each translation are also plotted. Thus, at the zero 
displacement, this 3σ uncertainty band represents the noise 
floor of the measurement, demonstrating the temporal varia-
tion when no displacement is applied. At the subsequent dis-
placements, the uncertainty bands represent three times the 
spatial standard deviation. For many of the data points, the 
standard deviations are so small that the uncertainty bands 
overlap with the data markers for the mean displacements. 
Each plot also features a solid black line indicating the true 
applied translation of the sample, accompanied by dashed 
gray lines above and below, indicating the uncertainty of 
applied translation due to the resolution of the translation 
stage, defined as half a tick mark (tick marks are every 0.001 
in or 0.0254 mm). The LR measurements were computed 
using the center image of each 9-image set, while the SANC, 
RSR, and PG measurements were computed using the con-
structed SR images. In all cases, the applied translation is 
within the applied translation uncertainty associated with 
the stage resolution, indicating that all 4 measurement meth-
ods show sufficient agreement with applied translation. Of 
note is the fact that the PG images at translation increments 
of 0.127 mm, 0.254 mm, and 0.381 mm failed to correlate 
in VIC-2D, and so no measurement data is seen for those 
measurements.

In Fig. 9, the mean measurement error from all subsets 
(defined as the applied translation subtracted from the meas-
ured translation) of the data displayed in Fig. 8 is plotted 
at each translation increment. The uncertainty bands again 
indicate three standard deviations of the measurement vari-
ation. As in Fig. 8, the solid black line marks zero error, or 

Fig. 8   Plots showing average measured translation vs. applied trans-
lation, with applied resolution uncertainty bands in blue and perfect 
agreement in brown, for (a) LR images, (b) RSR images, (c) PG 
images, and (d) SANC images. Uncertainty bands on markers rep-
resent three standard deviations of the spatial variation in measured 

translation across all subsets. The solid black line shows perfect agree-
ment between applied and measured translation, and bounding gray 
lines show uncertainty of applied translation due to stage resolution
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perfect agreement between applied and measured transla-
tion, and the dashed gray bounding lines show uncertainty 
of the applied translation due to the resolution of tick mark 
increments on the translation stage. Compared to Fig. 8, in 
which the uncertainty bands were too small to easily see, 
Fig. 9 allows a clearer side-by-side comparison of the error 
in each SR method. Again, note that due to select images 
failing to correlate, there is no PG data for the translation 
increments of 0.127 mm, 0.254 mm, and 0.381 mm. Also 
included in this figure are the LR Average and HR Interpola-
tion benchmarks described in the methods. The LR Average 
set is expected to show a reduction in noise from combining 
all 9 images while maintaining the original resolution, and 
the HR Interpolation set expands the LR Average by a factor 
of two to match the size of the SR images without using the 
SR algorithms.

Figure 10 shows further comparison between the SR 
and LR measurements for the largest applied translation 
(0.762 mm) in terms of how the spatial standard deviation 
is affected by subset size. The mean translation measure-
ment for each subset size is shown in the first subplot, along 
with uncertainty bands (the same 3σ quantities shown in 
the uncertainty bands of Fig. 9). The subset size of the LR 
images is shown (in pixels) on the horizontal axis above the 
plot, while the subset size of SR images is shown (in pixels) 
on the horizontal axis below the plot. The second subplot 
shows the size of the uncertainty bands from the first plot, 
again as a function of subset size. The common physical 
subset size is shown on the very bottom horizontal axis. 
As expected, the uncertainty band size decreases as subset 
size increases. It should be noted that this trend holds for all 
methods, although this decrease is small enough in some 
cases (such as the LR data) that it is hard to see when all 6 
methods are plotted on the same axes.

Mechanical Deformation Test

The contours of displacements in the direction of loading for 
the LR, RSR, SANC and zoom lens DIC results are shown 
in Fig. 11. Each contour is taken at the same deformation 
increment and each is plotted on the same scale for the same 
field of view. The images produced with the PG algorithm 
failed to correlate, therefore there are no PG contours in 
Fig. 11. Also included in the figure are representative subsets 
of the speckle pattern on the specimen surface. All are taken 
from the same location on the surface, and the LR, RSR, and 
SANC cover the same physical area. The zoom lens subset 
covers a smaller area, located in the upper left corner of the 
other subsets.

Discussion

Based on the results of the three tests just shown, several 
observations can be made on the strengths and weaknesses 
of the SR algorithms investigated. In addition, benefits and 
disadvantages of using SR imaging instead of traditional 
LR techniques are also demonstrated. These characteristics 
shown by the SR initial comparison, rigid body translation, 
and mechanical deformation tests are discussed below.

SR Initial Comparison Test

The initial comparison effectively shows some of the 
qualitative differences between the SR algorithm results. 
Comparing the images in Fig. 7(b)-(f), all 3 SR algorithms 
show slight improvements over the LR, but the image qual-
ity of each SR image is poor compared to the HR.

Fig. 9   The error (measured—
applied ring translation) aver-
aged across subsets for DIC 
results based on LR, LR Aver-
age, HR Interpolation, RSR, 
PG, and SANC images, given 
at each applied ring translation. 
Note that markers have been 
slightly offset for readability, 
and are grouped around the cor-
responding applied translation. 
Uncertainty bands show three 
standard deviations of spatial 
variation, and gray bounding 
lines represent resolution uncer-
tainty of the translation stage
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In the case of RSR, some features show slight improve-
ment over the LR image, such as recapturing some of the 
brighter colors on the lighted portions of the leaves. But 
many of the features become more pixelated than even 
the LR image, causing a loss of definition. This is evident 
in the screw at the top of the sign; the circular bound-
ary between screw and sign is more distorted in the RSR 
image than in the LR image. Although some aspects are 
visually clearer, the algorithm still adds graininess that is 
not present in the LR.

In the case of PG, the outline of the blue gaps of sky 
between leaves is slightly more defined in the PG image. 
Additionally, the lettering has slightly heavier weight than 
the LR, making it more comparable to the HR. However, 
‘trailing steps’ can be seen leading away to the left from 
the black-white diagonal border of the sign. This can also 
be seen in the LR image, but not in the HR image. Rather 

than smoothing out this boundary to approach the target HR 
image, the PG amplifies the trailing steps and emphasizes 
the artificial feature.

In the case of SANC, the appearance seems to fit most 
closely to the HR image. The lines and boundaries are 
smooth, and objects are easier to recognize than in either 
the RSR or the PG images. However, this strength of the 
SANC image is also its greatest shortcoming. Some details 
found in the HR image are lost to the smoothing effect, such 
as the blurring of letter corners.

This comparison test demonstrates that the most recent 
innovation of the three SR algorithms (SANC) performs best 
in visually obvious elements of reconstruction, but also high-
lights some of the potential downfalls in the new application 
to DIC. Because the SANC algorithm accounts for shape 
features, it follows that the features in the SANC-reproduced 
image more closely resemble those found in the HR image. 

Fig. 10   Upper subplot: final 
measured translation plotted 
with respect to physical subset 
size, in mm; uncertainty bands 
indicate the spatial variation 
across all subsets, represented 
as three standard deviations. 
The solid black line shows the 
applied translation, bounded by 
dashed gray lines representing 
uncertainty of applied transla-
tion due to stage resolution. 
Note that SR data are slightly 
offset for readability (only sizes 
indicated by tick marks were 
used). Lower subplot shows the 
size of the uncertainty bands 
from the upper subplot
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The algorithm distorts the shape of the convolution kernel 
to match image geometries based on gradient fields. Thus, 
the SANC image best replicates the features and objects in 
an HR image in a qualitative ‘eye’ test. But this smoothing 
of feature boundaries could lead to decreased performance 
in reconstructing speckle patterns. This could be especially 
true when individual speckles are relatively small compared 
to the features that the SANC algorithm is built to search for. 
And while RSR and PG produce more pixelated shapes, they 
may still work for speckled patterns used in DIC.

Rigid Body Translation Test

In the rigid body translation test, images from all three of 
the SR algorithms measure an applied translation as well as 
or better than LR images. In Fig. 8, the average of all sub-
sets in each image that successfully correlated was within 
the resolution uncertainty of the translation stage. However, 
some of the images produced by the PG algorithm failed to 
correlate, meaning that data was not extractable at all trans-
lation increments. Upon inspection of those images which 
failed to correlate, a checkerboard pattern of black pixels 
was interspersed in the image. This was also evidenced in 
the PG images from the mechanical deformation test as seen 
in Fig. 12. Three different types of this defect were found: 
A checkerboard of mostly black pixels, as seen on the far 
left of the figure, a series of black pixel vertical stripes, or a 
checkerboard of mostly non-altered pixels. This conversion 

of pixels to black did not appear in the LR original, shown 
in the right of the figure, or in the other SR images, as seen 
in the subsets of Fig. 11. This checkerboard pattern also did 
not appear in the PG images from the initial comparison test 
with the one-way sign. It may be caused by the PG algo-
rithm, a bug in its implementation in this software [38], or 
a combination of both, but it can obviously affect the DIC 
results or make correlation impossible.

Figure 9 affords a clearer look at both the accuracy and 
shortcomings of the different methods, by focusing on the 
error between the measurement and applied translation. All 
six image sets produced averages that lie close to the line of 
perfect agreement and within the bounding lines marking 
the uncertainty of applied translation due to stage increment 
resolution. At each translation increment, the ring translation 
was the same for all methods, and all images are centered on 
the same point. Thus, the unknown error in applied transla-
tion due to stage resolution uncertainty is the same for each 
of the three SR methods and the LR method. Therefore, the 
spread of bias errors shown in the figure between the six 
methods at each increment reflects on the precision of the 
methods. Although all six show some variability in these bias 
errors from increment to increment, they all show acceptable 
precision well within the stage resolution uncertainty.

Because of this unknown error in the applied measure-
ment, it is difficult to assess the three SR algorithms based 
solely on the average displacements in Fig. 9. To provide 
further clarity, the uncertainty bands can highlight the 

Fig. 11   DIC contours for 
displacements in the direction 
of loading for LR, RSR, SANC, 
and Zoom lens. Corresponding 
subsets of the speckle pattern 
for each method are shown in 
the bottom row. For legibility in 
this paper, the contrast was arti-
ficially improved using Matlab’s 
histogram equalization function, 
but only the un-altered versions 
were used in DIC calculations. 
The contrast of the un-altered 
images is also reported, defined 
as the span of the median 90% 
of pixel gray levels [50]
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consistency within each image. Because there is no strain 
or deformation in this rigid body translation test, the applied 
motion is nominally uniform and ideal measurement would 
yield zero variation. At zero translation, the uncertainty 
bands show the noise floor. As expected, the LR image gives 
the largest spatial variation, followed by the LR Average 
and HR Interpolation benchmarks. The three SR algorithms 
show slight improvement over the benchmarks in their noise 
floors, with RSR showing the greatest difference.

A significant contribution to this measurement error is 
the temporal variation from image to image. In particular, 
the LR image sets are the most prone to temporal varia-
tion, or noise. This is because all other methods benefit 
from combining information from multiple images. To bet-
ter understand the temporal variation of these inherently 
noisier LR images, a series of untranslated LR images was 
correlated, and a specific subset (seen in the left of Fig. 13) 
was followed through time. The fluctuation of the measured 
translation of that subset is shown at the right of Fig. 13. 
This temporal variation helps to quantify the error of the 
LR measurement associated with the random noise, which 
is mitigated through averaging in producing the images with 
the other methods.

At nearly every subsequent translation increment in 
Fig. 9, the LR also has the largest bands, demonstrating the 
greatest spatial variation amongst the subsets. The improve-
ment in spatial variation each method offers over LR is given 
in Table 3. Generally, the size of the uncertainty bands 
remains relatively uniform from increment to increment for 
the LR Average and HR Interpolation benchmarks and SR 
images. However, the RSR varies greatly from increment to 
increment, showing the best and worst improvement over 
LR at different increments, as seen in the table. Because 
the data from the PG image dropped at several increments 
due to the loss of pixels as shown in Fig. 12, it also has 
consistency issues. The SANC and benchmarks demonstrate 
consistency and seems to show the greatest reliability in 
the accuracy of the measurement, with the SANC generally 
having uncertainty bands of a size equal to or smaller than 
the benchmarks.

The differences in spatial variation are further investi-
gated as a function of subset size in Fig. 10. These data 
are taken from the measurements at the final ring transla-
tion increment of 0.782 mm, showing uncertainty band size 
plotted against the common physical subset size for the LR, 
benchmark, and SR images. At each comparable physical 

Fig. 12   PG speckle pattern 
images from the mechanical 
deformation test, showing the 
three types of defects found, 
from left to right: mostly 
black pixel checkerboard, 
vertical stripes of black pixels, 
and mostly non-altered pixel 
checkerboard. At the right, 
the original LR image of the 
speckle pattern

Fig. 13   Spatial variation of an 
image with zero translation, at 
left, and the temporal noise of a 
specific subset across a series of 
untranslated images, at right
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subset size, the SR algorithms all have smaller spatial vari-
ation, giving greater confidence in the measurement. Across 
all subset sizes, the LR Average benchmark showed a reduc-
tion in the band size by a factor of about 3, which aligns with 
the expectation that averaging N images can reduce noise 
by a factor of √N [51]. Interestingly, the HR Interpolation 
benchmark data showed nearly identical band size as the 
LR Average at the same physical subset size, despite hav-
ing 4 times more pixels per subset. This suggests that the 
added resolution through single image interpolation provides 
‘empty magnification’ without adding useful information to 
the LR Average image. In contrast, the SR uncertainty bands 
are smaller than those of the benchmark data at the same 
subset sizes. This difference becomes more pronounced as 
subset size increases, with PG and RSR showing improve-
ment by a factor of roughly 2 at the largest several subset 
sizes. This reduction of spatial variation seems to be due to 
more than just the averaging effect on image noise. As one 
of the main contributors to spatial variation errors is pattern-
induced bias error [52], this may indicate that SR algorithms 
can improve the quality of the pattern captured.

Also interesting to note in Fig. 10 is the lower limit to 
subset size; data is left off the plot once the image no longer 
correlates. The RSR algorithm has a subset size lower limit 
of 21 pixels, which is the same as the LR has. However, this 
21-pixel RSR subset covers a quarter of the area that the 
21-pixel LR subset does, allowing much finer strain resolu-
tion. Although the LR Average offers a reduction in noise 
over the original LR images, the lower limit is only slightly 
improved from 21 to 19. When considering the actual physi-
cal subset size, the lower limit of the HR Interpolation is 
better than the PG and SANC algorithms but worse than 
the RSR. This superior range of subset size, combined with 
superior spatial variation error, clearly demonstrates the 
advantages the RSR algorithm holds over the other methods.

Mechanical Deformation Test

The mechanical deformation of the ring in this test demon-
strated the capabilities of the LR and SR methods to measure 
heterogeneous strain fields. The results show similar dis-
placement contours between the LR and SR images, as seen 

in Fig. 11. In each case, the ring exhibits a greater displace-
ment gradient on the inside edge of the ring compared with 
the outer edge. This is consistent with higher strains at the 
inner edge as the curved ring is stretched and straightened, 
which is the expected behavior in this loading case. This 
distribution seems to match up well between the LR and SR. 
There are slight differences between the contours, however, 
as both the RSR and SANC appear to show slightly greater 
displacements on the top of the inner edge of the ring than 
the LR. The ‘higher resolution’ zoom lens image shows 
slightly higher displacements than the SR at the same loca-
tion on the inner edge. However, the fact that the SR con-
tours are slightly closer to the more accurate Zoom contour 
should not overshadow the reality that all methods produced 
very similar results.

The subsets shown in the bottom of Fig. 11 do give some 
insight into the differences between the various methods. The 
LR subset shows a typically pixelated speckle pattern. The 
RSR subset also looks pixelated, although there is a differ-
ence in the gray levels of the speckle borders. This seems 
to indicate a more gradual transition from the dark interior 
of the speckle to the lighter background. A similar effect is 
seen in the SANC subset, except that these transition zones 
are much smoother, leaving speckles that are more ‘bloblike’ 
than blocky. Neither of the SR methods approached the clar-
ity of speckle offered by the Zoom lens with roughly 15 times 
the resolution of the LR images, as seen in the Zoom subset.

Pairing of Zoom Lens with Super Resolution

The use of the zoom lens in the mechanical deformation test 
served as a standard of comparison for the SR algorithms, 
demonstrating that SR is equally capable in deformation 
measurements, if not offering slight improvement. It follows 
that pairing the two methods of higher resolution, a zoom 
lens and SR techniques, could produce further improvement. 
That possibility was evaluated by combining multiple zoom 
lens images at each grip displacement increment using the 
RSR and SANC algorithms, and then using Vic-2D to pro-
duce DIC strain contours. The RSR contour failed to cor-
relate, but the SANC contour is shown in Fig. 14.

Table 3   Summary of improvement over LR offered by each method. Values are calculated from the sizes of uncertainty bands reported in Fig. 9. 
Note that the average value for PG includes data only from those increments which correlated successfully

Applied Translation (mm) 0 0.127 0.254 0.381 0.508 0.635 0.762 Avg

Percent Improvement over LR
(1-σmethod/σLR)

LR Avg 68 70 45 65 47 75 67 63
HR Int 68 70 45 64 48 76 67 63
RSR 89 41 -8 85 22 37 80 50
PG 75 N/A N/A N/A 70 69 80 74
SANC 85 79 61 77 47 77 77 72
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The contour shows good agreement with the LR zoom 
lens results of Fig. 11, with similar distributions of displace-
ments at comparable locations. However, it should be noted 
that the same speckle pattern is on the ring for the original 
LR images and these SR zoom images, meaning that the 
speckle size and length scale of the pattern is ill-suited for 
such an increase in resolution, as can be seen in the subset of 
Fig. 14. Because the zoom lens’ field of view is roughly 15 
times smaller than the lower magnification lens, and because 
an interpolation factor of 1.5 was used for the SR zoom 
images, the pixel size of speckles in Fig. 14 is approximately 
23 times larger than in the LR contours of Fig. 11. As such, 
the results of the SR zoom images are limited by the speckle 
pattern. This is expected to be the reason that the RSR zoom 
images failed to correlate in the DIC software. However, this 
does highlight that SR can be paired with lenses of varying 
magnification, as long as the length scale of the speckle pat-
tern is appropriate for the image resolution.

Summary of Algorithm Performance

Through the three tests, differences in performance between 
traditional LR images and the 3 distinct SR alternatives 
became apparent. The initial comparison with the one-way 
sign showed clear improvement from the LR images for 
SANC, and to a lesser degree the PG and RSR also showed 
some improvement. However, none perfectly replicated the 
original HR image. Rigid body translation began to show 
problems with pairing PG with a DIC speckle pattern, drop-
ping some of the translations. The minimal error in both 
RSR and SANC measurements showed good accuracy, 
although the uncertainty bands of SANC showed better con-
sistency than was offered by the RSR algorithm. Conversely, 
RSR showed the smallest physical subset size, offering the 
best spatial resolution of the displacement measurement and 

Fig. 14   DIC displacement field in the direction of loading at final 
grip displacement increment for the combination of the zoom lens 
and SR. The SANC algorithm with an interpolation factor of 1.5 was 
used. A representative subset is overlaid on the portion of the speckle 
pattern shown below the contour. As with Fig.  11, the contrast was 
improved through Matlab’s histogram equalization for visualization 
of speckles, but only the un-altered versions were used in DIC calcu-
lations

Table 4   Summary of advantages and disadvantages of LR, RSR, PG, and SANC measurements across the three tests

Baseline/Low Resolu-
tion (LR)

Robust Super Resolution 
(RSR)

Papoulis-Gerchberg 
(PG)

Structure Adaptive Normalized Con-
volution (SANC)

Initial Comparison 
(One-Way Sign)

Pixelated and blurry Slightly sharper, but 
more pixelated lines 
and region transitions

Visually better than LR 
and RSR, but still has 
‘steps’ in transition 
regions

Appears the smoothest; it offers the 
best reproduction of original HR 
image

Rigid Body Translation Worst precision and 
confidence, but fairly 
consistent across 
images

Less consistent in its 
precision. Lowest 
spatial variation error 
and best spatial resolu-
tion (allowed smallest 
subset size of any)

Good precision, con-
fidence, and spatial 
resolution when it 
correlates. However, 
significant problems 
with failing to corre-
late several images

Good precision, consistent across all 
images. Performed better than LR 
and benchmarks but worse than 
RSR, PG in spatial variation error 
and spatial resolution

Mechanical Deforma-
tion

Similar displacement 
fields and lowest 
confidence

Displacement fields 
matched zoom lens 
well, slightly better 
than LR

Failed to correlate Displacement fields matched ‘high 
resolution’ zoom lens contours. 
Performed very similarly to RSR
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the lowest spatial variation error. In the mechanical deforma-
tion, the issues with PG and DIC became very clear, causing 
all images to fail to correlate. In pairing SR with the zoom 
lens, the SANC image set was the only one of the three 
which was able to successfully correlate to the final defor-
mation (Table 4).

Conclusion

In summary, the application of super resolution (SR) algo-
rithms was investigated as a method of increasing the resolu-
tion of DIC strain measurements for samples at long working 
distances. Comparisons between Robust Super Resolution 
(RSR), Papoulis Gerchberg (PG), and Structure Adaptive 
Normalized Convolution (SANC) were evaluated through 
three tests: visual inspection, rigid body translation, and 
mechanical deformation experiments. The first test dem-
onstrated that all three algorithms produce images which 
have some improvement visually over the LR images they 
are constructed from, with SANC performing best. The 
second test showed significant improvement offered by all 
three algorithms in measurement accuracy, precision, and 
spatial variation error, with RSR performing the best and 
PG failing to correlate in some cases. The final test again 
showed improvement in spatial resolution when using SR 
methods, and RSR and SANC performed equally well. With 
all three tests considered, SANC seems the algorithm best 
suited for SR-DIC among those investigated in this work, 
although RSR performs nearly as well and computes much 
more quickly.

When increasing resolution through SR methods, SR-
DIC measurements show improvement over the original LR 
images, although they do not show the same improvement 
that would be expected from increasing to the same reso-
lution through improved optics. There is some increase in 
computational time when taking these measurements, and 
the time required to capture multiple images makes it better 
suited for quasi-static in-situ experiments. Tests which most 
benefit from the use of SR techniques are those in which 
long working distances and small sample size prevent DIC 
from providing high resolution strain information across an 
entire region of interest.
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