See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338843994

Dilatatone, a new chlorinated compound from Parmotrema dilatatum

Article *in* Natural Product Research · January 2020 DOI: 10.1080/14786419.2020.1716348

culturing the mushroom View project

CITATION 1		reads 101				
9 authors, including:						
0	Truong Hoang Vinh Phan Ho Chi Minh City Pedagogical University 6 PUBLICATIONs 1 CITATION SEE PROFILE		Duy Hoang Le Kobe Pharmaceutical University 21 PUBLICATIONS 75 CITATIONS SEE PROFILE			
E	Trung Nguyen Thanh Duy Tan University 19 PUBLICATIONS 84 CITATIONS SEE PROFILE		Huu-Hung Nguyen Nguyen Tat Thanh University 36 PUBLICATIONS 105 CITATIONS SEE PROFILE			
Some of the authors of this publication are also working on these related projects:						

Cultivation Vietnamese lichen mycobionts for production of biological secondary metabolites View project

All content following this page was uploaded by Trung Nguyen Thanh on 30 January 2020.

Natural Product Research **Formerly Natural Product Letters**

ISSN: 1478-6419 (Print) 1478-6427 (Online) Journal homepage: https://www.tandfonline.com/loi/gnpl20

Dilatatone, a new chlorinated compound from Parmotrema dilatatum

Hoang-Vinh-Truong Phan, Asshaima Paramita Devi, Hoang-Duy Le, Thanh-Trung Nguyen, Huu-Hung Nguyen, Tran-Thai-Duong Le, Tai Hoang Nguyen, Jirapast Sichaem & Thuc-Huy Duong

To cite this article: Hoang-Vinh-Truong Phan, Asshaima Paramita Devi, Hoang-Duy Le, Thanh-Trung Nguyen, Huu-Hung Nguyen, Tran-Thai-Duong Le, Tai Hoang Nguyen, Jirapast Sichaem & Thuc-Huy Duong (2020): Dilatatone, a new chlorinated compound from Parmotrema dilatatum, Natural Product Research, DOI: 10.1080/14786419.2020.1716348

To link to this article: https://doi.org/10.1080/14786419.2020.1716348

View supplementary material

-							
				L			
				L			
				L			

Published online: 27 Jan 2020.

Submit your article to this journal 🗹

Article views: 14

View related articles 🗹

View Crossmark data 🗹

Check for updates

Dilatatone, a new chlorinated compound from *Parmotrema dilatatum*

Hoang-Vinh-Truong Phan^a, Asshaima Paramita Devi^b, Hoang-Duy Le^c, Thanh-Trung Nguyen^d, Huu-Hung Nguyen^e, Tran-Thai-Duong Le^f, Tai Hoang Nguyen^g, Jirapast Sichaem^h b and Thuc-Huy Duong^a

^aFaculty of Chemistry, University of Education, Ho Chi Minh City, Vietnam; ^bCenter of Excellence in Natural Products Chemistry, Department of Chemistry Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand; ^cDepartment of Chemistry, Pham Van Dong University, Quang Ngai, Vietnam; ^dInstitute of Research and Development, Duy Tan University, Da Nang, Vietnam; ^eFaculty of Environment and Biotechnology, Van Lang University, Ho Chi Minh City, Vietnam; ^fInstitute of Drug Quality Control, Ho Chi Minh City, Vietnam; ^gCenter of Research and Application Biology, Ho Chi Minh City, Vietnam; ^hFaculty of Science and Technology, Thammasat University, Lampang, Thailand

ABSTRACT

Chemical investigation of the lichen *Parmotrema dilatatum* led to the isolation of a new chlorinated compound, named dilatatone (1), along with a known compound, sernanderin (2). Their chemical structures were determined by analysis of their 1 D and 2 D NMR spectra, HRESIMS, and ECD data. Both compounds showed weak α -glucosidase inhibitor activity.

ARTICLE HISTORY

Received 14 November 2019 Accepted 7 January 2020

KEYWORDS

Parmotrema dilatatum; lichen; dilatatone; α-glucosidase inhibitory activity

1. Introduction

Chemists have been turning their attention to bioactive lichen metabolites, in particular phenolic compounds such as depsides, depsidones, and diphenyl ethers (Boustie and Grube 2005; Thadhani et al. 2011; Kellogg and Raja 2017). *Parmotrema* form a large genus in the family Parmeliaceae. Three of its members, *P. tsavoense*, *P. sanctiangelii*, and *P. praesorediosum*, are native to Vietnam (Duong et al. 2018a, 2018b).

CONTACT Jirapast Sichaem 🖾 jirapast@tu.ac.th, huydt@hcmue.edu.vn

Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2020.1716348.

 $\ensuremath{\mathbb{C}}$ 2020 Informa UK Limited, trading as Taylor & Francis Group

Figure 1. Chemical structures of 1 and 2.

Investigation of these lichens has resulted in the isolation of many novel compounds with interesting biological properties. As part of our systematic research on bioactive Vietnamese lichens, we examined *Parmotrema dilatatum*, which is widely distributed at high altitudes in the south of Vietnam. Little is known about the chemistry of *P. dilatatum*, with a single published report having isolated two major components, salazinic acid and atranorin (Honda et al. 2010). In this paper, we report the isolation of a new compound, dilatatone (1), together with a known one, sernanderin (2) (Kinoshita et al. 2004) (Figure 1). Their chemical structures were elucidated by interpretation of spectroscopic data. All isolated compounds were also examined for their α -glucosidase inhibitory activity.

2. Results and discussion

Compound 1 was isolated as a white amorphous powder. The molecular formula was established to be $C_{16}H_{17}O_5CI$ on the basis of the positive-ion mode HRESIMS data with a sodiated ion peak at m/z 347.0660 (calcd. for $C_{16}H_{17}O_5CINa$ 347.06583). The ¹H NMR and HSQC spectra of 1 showed the presence of one hydrogen-bond hydroxyl group (δ_{H} 11.75, s), one sp^3 methine group (δ_{H} 3.66, m), three diastereotopic methylene groups ($\delta_{\rm H}$ 2.70, m and 2.53, m; 2.65, m and 2.38, 16.0, m; 2.23, dd, J = 13.6, 2.4 Hz and 2.03, m), one methoxy group (δ_H 3.86, s), and singles for two methyl groups (δ_H 2.49 and 1.55). Supporting the HSQC analysis, the ¹³C NMR spectrum suggested the presence of one ketone carbonyl carbon (δ_{c} 208.2), one ester carbonyl carbon (δ_{c} 172.1), three methylene groups (δ_{C} 53.3, 45.8, and 34.6), one methoxy group (δ_{C} 52.3), one methine carbon ($\delta_{\rm C}$ 26.8) and two methyl groups ($\delta_{\rm C}$ 28.6 and 19.7), and seven quaternary carbons, three of which were oxygenated (δ_{c} 159.2, 153.2, and 78.9). The downfield methine proton at δ_{H} 3.66 (H-8) gave HMBC cross peak to the carbon at δ_{C} 153.2 (C-4), indicating that this group attached at C-3. Three methylene moieties at $\delta_{\rm H}$ 2.70/2.53 (H₂-9), 2.23/2.03 (H₂-13), and 11.75 (2-OH) showed HMBC correlations to the same carbon at δ_{c} 110.6 (C-3), suggesting direct linkages of H₂-9/H-8/H₂-13. The HMBC correlations of H₂-9 and H₂-11 ($\delta_{\rm H}$ 2.65/2.38) to the carbon at $\delta_{\rm C}$ 208.8, indicating the presence of the ketone carbonyl carbon at C-10. Both H₂-11 and H₃-14 (δ_{H} 1.55) showed HMBC cross peaks to C-13 and carbon at $\delta_{\rm C}$ 78.9, defining the connectivity as arising through C-11-C-14 at C-12 (Figure S1). The 13 C chemical shift of C-12 (δ_{c} 78.9) indicated its oxygenated status. Taken together, the spectroscopic data suggested a

molecular formula of $C_{16}H_{17}O_5$ and 7 DBEs. The remaining DBE together with the molecular formula of **1** indicated ether linkage between C-12 and C-4. The NMR data of **1** were showed that they similar to those of sernanderin (**2**) (Kinoshita et al. 2004), differing only in the presence of a chlorine atom instead of the aromatic proton at C-5. Further HMBC correlations of H₃-15 to C-1 (δ_C 105.9), C-5 (δ_C 114.7), and C-6 (δ_C 138.2) confirmed this.

The null optical rotation of **1** and the absence of Cotton effects in the ECD spectrum indicated that **1** is racemic, which has been occurred in a natural racemic compound **2** (Kinoshita et al. 2004). Thus, compound **1** was identified as dilatatone, and is shown as Figure 1.

Lichen metabolites have demonstrated promising results as a reservoir of biological active compounds (Karunaratne et al. 2014). The review establishes that the lichen extracts, especially of *Parmotrema* sp. has shown promising potential in the α -glucosidase inhibitory assay (Thadhani and Karunaratne 2017). To the best of our knowledge, this is the first evaluation of the *in vitro* anti α -glucosidase activity of this type of compounds (**1** and **2**). Both compounds **1** and **2** showed weak α -glucosidase inhibitory activity with IC₅₀ values of 181.8 ± 0.27 and 146.0 ± 0.06 µM, respective. This result suggests that the α -glucosidase inhibitors from *P. dilatatum* are other types of compounds (Thadhani and Karunaratne 2017).

3. Experimental

3.1. General experimental procedures

Spectroscopy was performed on a Bruker Advance III (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) spectrometer with TMS as internal standard recording NMR spectra. Chemical shifts are expressed in ppm with a reference of chlroform-*d* at $\delta_{\rm H}$ 7.26 and $\delta_{\rm C}$ 77.8. The HRESIMS were recorded on an HRESIMS Bruker micrOTOF Q-II. TLC was carried out on precoated silica gel 60 F₂₅₄ or silica gel 60 RP–18 F₂₅₄S (Merck Millipore, Billerica, Massachusetts, USA) and spots were visualised by spraying with 10% H₂SO₄ solution followed by heating. Gravity column chromatography was performed with silica gel 60 (0.040–0.063 mm) (HiMedia, Mumbai, India).

3.2. Lichen material

Lichen thalli were separated from rocks in Lam Dong province, Vietnam in August and September 2015. The scientific name was given by Dr. Wetchasart Polyiam, Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Thailand. A voucher specimen (No. US-B033) was deposited at the Herbarium of the Department of Organic Chemistry, University of Science, National University, Ho Chi Minh City, Vietnam.

3.3. Extraction and isolation

The lichen thalli were air-dried and ground, and 703 g of the ground material was macerated in acetone $(3 \times 10 L)$ at room temperature. The solution was filtered and

4 🕢 H.-V.-T. PHAN ET AL.

concentrated *in vacuo* to afford a crude acetone extract (112.54 g). The acetone crude extract was subjected to normal phase silica gel quick column chromatography, and eluted consecutively with *n*-hexane, dichloromethane, ethyl acetate, acetone, and methanol to yield five fractions: **PH** (3.02 g), **PC** (6.17 g), **PEA** (44.53 g), **PA** (31.71 g), and **PM** (4.91 g), respectively. The **PH** fraction (3.02 g) was subjected to normal phase silica gel column chromatography (CC) and eluted with solvent system *n*-hexane:ethyl acetate (8.0:2.0) to obtain five fractions: **MT1** (1.57 g), **MT2** (0.37 g), **MT3** (0.32 g), **MT4** (0.19 g), and **MT5** (0.55 g). Fraction **MT3** was further subjected to normal phase CC and isocratically eluted with *n*-hexane:ethyl acetate:acetone:acetic acid (8.0:2.0:0.4:0.1, v/v/v/v) to yield three subfractions, denoted **MT3.1-3**. **MT3.3** was purified by reverse-phase CC using the mobile phase of methanol–water (3:1, v/v), yielding compounds **1** (2.6 mg) and **2** (4.3 mg).

3.3.1. Dilatatone (1)

White amorphous powder, $[\alpha]_{D}^{25}$ 0 (*c* 0.01, CHCl₃); HRESIMS *m/z* 347.0660 (M + Na; calcd for C₁₆H₁₇O₅ClNa, 347.0658); ¹H NMR (400 MHz, acetone-*d*₆) δ_{H} 11.75 (1 H, s, 2-OH), 3.86 (3 H, s, H-16), 3.66 (1 H, m, H-8), 2.70 (1 H, m, H-9a), 2.53 (1 H, m, H-9b), 2.65 (1 H, m, H-11a), 2.38 (1 H, d, 16.0 Hz, H-11b), 2.49 (3 H, s, H-15), 2.23 (1 H, dd, 2.4 Hz, 13.6 Hz, H-13a), 2.03 (1 H, m, H-13b), 1.55 (3 H, s, H-14); ¹³CNMR (100 MHz, acetone-*d*₆) δ_{C} 208.2 (C-10), 172.1 (C-7), 159.2 (C-2), 153.2 (C-4), 138.2 (C-6), 114.7 (C-5), 110.6 (C-3), 105.9 (C-1), 78.9 (C-12), 53.3 (C-11), 52.3 (C-16), 45.8 (C-9), 34.6 (C-13), 28.6 (C-14), 26.8 (C-8), 19.7 (C-15).

3.4. α-Glucosidase inhibitory activity

 α -Glucosidase inhibitory activity against baker's yeast was applied from a previous procedure (Sichaem et al. 2017). Enzymatic activity was quantified by measuring absorbance at 405 nm (ALLSHENG micro plate reader AMR-100). Acarbose[®] was used as a positive control (IC₅₀ 93.6±0.49 μ M). Each of the compounds was tested with three concentrations. The mean values and standard deviations were determined. IC₅₀ values were calculated using Microsoft Excel software.

4. Conclusions

In this study, two secondary metabolites (1 and 2) were isolated from *P. dilatatum* and their structures were elucidated as dilatatone (1) and sernanderin (2). To the best of our knowledge, compound 1 is a new chlorinated compound having a unique skeleton that are rarely reported from natural products, whereas 2 was isolated from this lichen for the first time. Compounds 1 and 2 exhibited weak α -glucosidase inhibitory activity.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research is funded by Vietnam Ministry of Education and Training grant #B2018-SPS-21. The authors would like to thank Dr. Wetchasart Polyiam, Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Thailand for the determination of the scientific name for the studied lichen.

ORCID

Jirapast Sichaem () https://orcid.org/0000-0003-1407-496X Thuc-Huy Duong () http://orcid.org/0000-0001-9891-4326

References

- Boustie J, Grube M. 2005. Lichens a promising source of bioactive secondary metabolites. Plant Genet Resour. 3(2):273–287.
- Duong T-H, Beniddir M A, Genta-Jouve G, Aree T, Chollet-Krugler M, Boustie J, Ferron S, Sauvager A, Nguyen H-H, Nguyen K-P-P, et al. 2018a. Tsavoenones A–C: unprecedented polyketides with a 1,7-dioxadispiro [4.0.4.4] tetradecane core from the lichen *Parmotrema tsavoense*. Org Biomol Chem. 16(32):5913–5919.
- Duong T-H, Ha X-P, Chavasiri W, Beniddir M A, Genta-Jouve G, Boustie J, Chollet-Krugler M, Ferron S, Nguyen H-H, Yamin B M, et al. 2018b. Sanctis A-C: Three racemic procyanidin analogues from the lichen *Parmotrema sancti-angelii*. Eur J Org Chem. 2018(19):2247–2253.
- Honda NK, Pavan FR, Coelho RG, de Andrade Leite SR, Micheletti AC, Lopes TI, Misutsu MY, Beatriz A, Brum RL, Leite CQ. 2010. Antimycobacterial activity of lichen substances. Phytomedicine. 17(5):328–332.
- Karunaratne V, Thadhani VM, Khan SN, Choudhary MI. 2014. Potent α-glucosidase inhibitors from the lichen *Cladonia* species from Sri Lanka. J Natn Sci Foundation Sri Lanka. 42(1):95–98.
- Kellogg JJ, Raja HF. 2017. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev. 16(2):271–293.
- Kinoshita K, Takatori K, Narui T, Culberson CF, Hasumi M, Nishino Y, Koyama K, Takahashi K. 2004. A novel secondary metabolite from *Lethariella sernanderi*. Heterocycles. 63(5): 1023–1026.
- Sichaem J, Aree T, Lugsanangarm K, Tip-Pyang S. 2017. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from *Zizyphus rugosa* bark: enzyme kinetic and molecular docking studies with active metabolites. Pharm Biol. 55(1):1436–1441.
- Thadhani VM, Choudhary MI, Ali S, Omar I, Siddique H, Karunaratne V. 2011. Antioxidant activity of some lichen metabolites. Nat Prod Res. 25(19):1827–1837.
- Thadhani VM, Karunaratne V. 2017. Potential of lichen compounds as antidiabetic agents with antioxidative properties: A review. Oxid Med Cell Longev. 2017:1–10.