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Abstract: To provide a more practical method of controlling the frequency and tie-line power flow 
of a multi-area interconnected power system (MAIPS), a state observer based on sliding mode con-
trol (SOboSMC) acting under a second-order time derivative is proposed. The proposed design is 
used to study load frequency control against load disturbance, matched and mismatched uncer-
tainty and parameter measurement difficulties of power systems that exist in the modern power 
plant, such as multi-area systems integrated with wind plants. Firstly, the state observer is designed 
to optimally estimate system state variables. The estimated states are applied to construct the model 
of the MAIPS. Secondly, a SOboSMC is designed with an integral switching surface acting on the 
second-order time derivative to forcefully drive the dynamic errors to zero and eliminate chattering, 
which can occur in the first-order approach to sliding mode control. In addition, the stability of the 
total power system is demonstrated with the Lyapunov stability theory based on a new linear ma-
trix inequality (LMI) technique. To extend the validation of the proposed design control for practical 
purposes, it was tested in a New England system with 39 bus power against random load disturb-
ances. The simulation results confirm the superiority of the proposed SOboSMC over other recent 
controllers with respect to overshoot and settling time. 
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1. Introduction 
Recently, more electrical power can be generated from wind turbines due to im-

provements in technology. Many power companies are investing in wind farms to supply 
electricity to their end0users. Moreover, remote geographical locations that are outside of 
grid services have been fed by wind farms. Efforts are on-going to integrate wind turbines 
with the existing MAIPS in order to increase grid services. However, wind farms inte-
grated with the existing power network raise some concerns due to frequency deviations. 
These concerns are intermittent problems associated with the wind energy source, which 
involve maximum power point tracking, synchronization problems, uncertainty, diffi-
culty in system parameter measurements (since the dynamic behaviors are different from 
conventional power plants), etc. These are additional to the existing disturbances, such as 
nonlinearity, random and step-load disturbances, matched and mismatched uncertainty, 
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etc., which are found in conventional MAIPSs. Thus, these factors give rise to large fre-
quency errors and affect the power quality. The load frequency control (LFC) scheme has 
been utilized to take care of the frequency deviation and to ensure the quality of the power 
supply. Moreover, the concerns, characteristics and behaviors of MAIPSs, as mentioned 
above, are vital issues in LFC design [1]. Classical, intelligent and optimal control tech-
niques have been applied to LFC of MAIPSs in the past and are discussed in [2–17]. A 
major problem with the interconnection of the power systems is increasingly related to 
the system and system parameter uncertainties. Therefore, the control approaches out-
lined in [2–17] exhibit some limitations, as discussed in [18]. Thus, a robust LFC technique 
for MAIPS was proposed in [18]. 

The sliding mode control (SMC) scheme is one of the robust control approaches pro-
posed in order to solve the above problem. It was selected because of its robustness against 
load disturbances and parameter variations. The SMC scheme was designed for the LFC 
of MAIPSs in various operating conditions, which are presented in [19,20]. Recently, the 
adaptive technique combined with sliding mode control has been developed to study the 
LFC of MAIPSs [21]. Adaptive event-triggered SMC was used to investigate the LFC of 
an MAIPS under a deregulated environment [22]. More recently, double-integral SMC 
was applied for the decentralized adaptive LFC of an MAIPS, presented in [23]. However, 
these above SMC approaches act under the first-order time derivative. In further studies, 
the first-order SMC may suffer from the chattering phenomenon, which can cause inac-
curacies in LFC due to the discontinuous control signal in the SMC controller, which 
causes harmonics and affects the system performance and the power quality. Therefore, 
second-order SMC is used to eliminate the above chattering problem. Second-order SMC 
was applied for the LFC of an MAIPS to solve the chattering problem and discussed in 
[24]. An adaptive SMC combined with the higher-order SMC for the LFC of an MAIPS 
was invented to improve the elimination of chattering, as presented in [25–27]. However, 
in a real MAIPS, the LFC design is better when load disturbances are not required to be 
measured. To solve this difficulty, the use of a disturbance observer has been applied for 
the LFC of MAIPSs [28]. In addition, the disturbance observer combination with SMC for 
the LFC of MAIPSs was also discussed in [29–31]. Recently, a state observer was used to 
estimate the non-measurement system state variables for designing the LFC of MAIPSs 
[32]. A non-linear SMC based on a generalized observer was developed to regulate fre-
quency in a large power system [33,34]. However, there are some limitations of the above 
approaches for the LFC of the MAIPS. First, the system state variables need to be meas-
ured for the feedback of the load frequency controller [23–31]. Second, the controller suf-
fers from the chattering problem inherent in the first-order SMC [32–34]. Therefore, this 
article focuses on a more realistic LFC design for an MAIPS integrated with a wind plant. 
Thus, the estimated system state variables (SSVs) from the observer are used in the sliding 
surface, along with a decentralized second-order SMC, so that the SSVs are not required 
to be measured. The novelties of the paper are discussed below. 
• The sliding surface and the decentralized continuous load frequency controller are 

designed to be fully dependent on the SSVs estimated by the observer; thus, the lim-
itation of using state variables for the feedback of the control (discussed in [23–31]) 
has been solved. 

• The MAIPS state variables and the estimated MAIPS state variables are asymptoti-
cally stable with the new linear matrix inequality (LMI) method. 

• A sliding mode acting under the second-order time derivative is developed to im-
prove the system performance by eliminating the problem of chattering, in contrast 
with the approaches given in [32–34]. 

• The simulation results show that the MAIPS performance is better in terms of over-
shoot and settling time in comparison with some recent approaches. Therefore, the 
proposed method is useful for the LFC of real MAIPSs. 
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2. Multi-Area Interconnected Power System (MAIPS) Model in the State Space Form 
for Load Frequency Control 

For the purpose of LFC, we first derive an MAIPS model. A power network with 
three areas is contemplated. Thus, areas 1 and 3 are integrated with a wind plant, whereas 
area 2 consists of a non-reheat turbine alone, as shown in Figure 1. In general, if ith area 
is considered, then the system is re-sketched as shown in Figure 2. 

 
Figure 1. A simplified sketch of a three-area integrated wind plant system. 

 
Figure 2. Schematic block diagram sketch for ith area network, including a wind farm. 

For simplicity, we have modeled the conventional and wind power networks sepa-
rately. As we know, the conventional power system considered consists of a speed 
changer motor, governor, non-reheat turbine and generation. We model each component 
of the conventional MAIPS in the ith area, as displayed in Figure 2, in same way as [24,31]. 
Frequency change is made to be the output of the generator so that LFC can be achieved. 
Next, we determine the dynamic relations, which consist of a speed changer motor, a gov-
ernor, a non-reheat turbine and a generator of the ith area model, as expressed by: 

W ij
1,

1( ) ( ) ( ) ( ) ( ) { ( ) ( )}
2

N
pi pi pi Pi

i mi di i i i j
i j iPi Pi Pi Pi Pi

K K K Kf t P t P t P t f t K t t
T T T T T

δ δ
π = ≠

Δ = Δ − Δ + Δ − Δ − Δ − Δ   (1)

1 1( ) ( ) ( )mi gi mi
Ti Ti

P t P t P t
T T

Δ = Δ − Δ   (2)

1 1 1( ) ( ) ( ) ( )gi i gi i
i Gi Gi Gi

P t f t P t u t
RT T T

Δ = − Δ − Δ +   (3)
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ij
1,

( ) ( ) { ( ) ( )}
2

N
Ei

i Ei Bi i i j
i j i

KE t K K f t K t tδ δ
π = ≠

Δ = Δ + Δ − Δ  (4)

( ) 2 ( )i it f tδ πΔ = Δ  (5)

where ( )if tΔ  is the individual area frequency deviation, ( )miP tΔ  is the mechanical 
power deviation of each area, ( )giP tΔ  is each area turbine valve position deviation, 

( )diP tΔ  is each unit load deviation, iR  is the individual area droop coefficient and ijK  is 
the synchronization coefficient. W ( )iP tΔ is the wind disturbance, ( )i tδΔ  and ( )j tδΔ  are 
small change in power angle, BiK and EiK are the frequency response coefficient. PiT , GiT  
and TiT  are the subsystem parameters. ( )iE tΔ   is denoted as the area control error. The 
system state space form of ith area is shown as follows. 

1
( ) ( ) ( ) ( ) ( )

( ) ( )

N

i i i i i ij j i di
j
j i

i i i

x t A x t B u t H x t F P t

y t C x t

=
≠

= + + + Δ

=


  (6)

The system matrices , , ,i i i ijA B F H  in the state space model are given below: 

ij
1,

ij
1,

ij
1,

ij
1,

1 0 0
2 0 0 0 0

21 10 0 0
0 0 0 0 0

,1 1 0 0 0 0 00 0 0
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2 0 0 0 0 0
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= ≠

= ≠

= ≠
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( ) ( ) ( ) ( ) ( ) ( )
T

i i mi gi i ix t f t P t P t E t tδ = Δ Δ Δ Δ   represent the state variables in the 

state space model. ( ) m
iu t R∈  is the control input. ( )diP tΔ is the load uncertainty. 

The model of the wind farm in the ith area is further discussed in the next section. 

3. Wind Plant Model 
A typical variable speed wind turbine generator system (VS-WTGS) is evaluated. For 

the VS-WTGSs, the wind power generates mechanical torque via the turbine generator 
shaft; thus, electrical torque is produced. The mechanical system acceleration, decelera-
tion or constant speed depend on the change in mechanical and electrical torque. Thus, 
the net power output is related to the mechanical power. 

Building the dynamic equations of the wind plant is based on the relationship of me-
chanical output power and wind velocity. The output power is therefore given as [35] 

3
w

1( , )
2m p indP C AVλ β ρ=   (7)
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where mP  is the turbine mechanical output (W), pC is the turbine performance coeffi-
cient, λ  is the tip speed ratio, β  is the pitch angle of the blade (deg), ρ is the air density 
( 3/kg m ), A  is the turbine swept area ( 2m ) and windV is the wind speed (m/s). 

− The tip speed ratio ( λ ) 

 r r

w

R
V

ωλ =  (8)

where rR  and rω  are radius and spin speed of the wind plant, respectively. 

− Performance coefficient ( pC ) of the turbine is given by. 

5

2
1 3 4 6( , ) i

c

p
i

cC c c c e cλλ β β λ
λ

− 
= − − + 

 
  (9)

with 

3

1 1 0.035
0.08 1iλ λ β β

= −
+ +

  (10)

where the coefficients 1c  to 6c  are dependent on the wind plant. 
Finally, we can present the equation of the wind plant via a per-unit (p.u) system, as 

given below. 

3
_ _ w _m pu p p pu ind puP k C V= × ×   (11)

_m puP is the mechanical power in per unit, 1pk ≤  is the amplified power factor, _p puC  
is the power factor and w _ind puV  is the wind speed. 

To design the new LFC for the MAIPS, we derive the following basic assumption. A 
lemma is also adopted to accompany the progress of the work. 

Assumption 1. Load uncertainty ( )diP tΔ  and the differential of ( )diP tΔ  is bounded such that 

( )di iP t τΔ ≤  and ( )di iP t τΔ ≤ , where iγ  and iγ  are known scalars and .  is a matrix norm. 

Assumption 2. The eigenvalues of the matrix i i iA TC−  can be chosen arbitrarily by appropriate 

choice of the observer gain iT  when the pair [ ],i iA C  is observable. 

Lemma 1 [24]. Let X  and Y  be a real matrix of suitable dimension then, for any scalar 0μ > , 
the below matrix inequality holds: 

1 .T T T Tμ μ −+ ≤ +X Y Y X X X Y Y   (12)

4. State Observer Based on Sliding Mode Control Strategies 
4.1. Multi-Area Power System State Observer Design 

This part, we considered the fact that the power network state variables are difficult 
to measure. Therefore, the state observer technique is applied. The original internal state 
of (6) is then estimated by the state observer using the experience of the output and input; 
therefore, the observer is designed as follows. 



Appl. Sci. 2021, 11, 3051 6 of 21 
 

 

( )
1

( ) ( ) ( ) ( ) ( ) ( )

( )

N

i i i i i ij j i i i
j
j i

i i i

z t A z t B u t H z t T y t n t

n t C z

=
≠

= + + + −

=


  (13)

where iz  is the estate of ix  and iT  is a matrix gain, which is selected to ensure that the 
continuous-time dynamics error converges to zero faster. ( )iy t  is the output signal of the 
power system and ( )in t  is the state observer output, respectively. 

4.2. Stability Analysis of Whole System in Sliding Mode Dynamic 
The new SMC is designed with a better sliding surface for sliding variables to rapidly 

reach the surface and remain thereon. The sliding surface is therefore given below 

 
0

[ ( )] ( ) ( ) ( )
t

i i i i i i i i iz t L z t L A B J z dσ τ τ= − −  (14)

where iL  is a constant matrix and iJ  is the design matrix. Matrix iL  is selected to guar-

antee that the matrix i iL B  is invertible. The design matrix ×∈ i im n
iJ R  is given, satisfying 

the non-linearity condition 

 maxRe[ ( )] 0i i iA B Jλ − <  (15)

For the continuous system observability rule, the estimation error defined by 
( ) ( ) ( )= −i i ie t x t z t  must satisfy the below equation 

 
1

( ) ( )
N

i i i i i ij j i di
j
j i

e A TC e H e F P t
=
≠

= − + + Δ  (16)

If we take the derivative of (13) with respect to time, we therefore obtain 

( )
1

[ ( )] [ ( ) ( ) ( ) ]

( ) ( )

σ
=
≠

= + + + −

− −


N

i i i i i i i ij j i i i
j
j i

i i i i i

z t L A z t B u t H z t T y n

L A B J z t

  (17)

Setting ( ) ( ) 0t tσ σ= = , we can see that the equivalent control signal is as below 

 

( )

( )

1

1

1

1

( ) ( ) [ ( ) ( ) ] ( ) ( )]

( ) [ ( ) ( )]

N
eq
i i i i i i i ij j i i i i i i i i i

j
j i

N

i i i i i i i i i i i ij j
j
j i

u t L B L A z t L H z t LT y n L A B J z t

L B L B J z t LT y n L H z t

−

=
≠

−

=
≠

= − + + − − −

= − + − +




 (18)

Substituting ( )u t  into (6) yields the sliding motion: 

 

( )1

1

1 1

1

1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ( ) ) ( )

[ ( ) ] ( ) ( ) ( )

i i i i i i i i i i i i i

N N

i i i i ij j ij j i di
j j
j i j i

i i i i i i i i i i i i i
N

ij i i i i ij j i i i i ij j
j
j i

x t A x t B J z t B L B LT y n

B L B L H z t H x t F P t

A B J x t B J B L B LTC e t

H B L B L H x t B L B L H e t

−

−

= =
≠ ≠

−

− −

=
≠

= − − −

− + + Δ

= − + −

+ − +

 





1
( )

N

i di
j
j i

F P t
=
≠

+ Δ

 (19)

Combining system (6) and error system (18), the closed-loop system is written as 
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1

               ( )
0                  0                     ( )

N
ij i ij i ij ji i i i i i i di
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e A TC e H e F P t=

≠

− Λ Λ   − Φ Δ       
= + +          − Δ             





 (20)

where 
1( )−Φ = −i i i i i i i i iB J B L B LTC  and 

1( )−Λ =i i i i iB L B L . 
Equation (19) provides the condition that the MAIPS in the sliding surface is stable if 

the sliding motion (19) is stable and the observability condition holds following assump-
tion 2. Therefore, the sliding motion (19) is also made Hurwitz, so the observer error 𝑒ሺ𝑡ሻ → 0 when 𝑡 → ∞. To prove the above condition, we postulate a theorem as follows. 

Theorem 1. The sliding motion (19) is asymptotically stable, if there exist symmetric positive 
definite matrices iP , iQ , 1,  2,  . . .i N=  and positive scalars iλ , iρ , îγ  and iγ  so that the be-
low linear matrix inequality is feasible 

1

1

1
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i i iF Q
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−
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 <

 
 
 
 
 
 

  (21)

where ( ) ( )Χ = − + − T
i i i i i i i i iP A B J A B J P  and ( ) ( )Χ = − + − T

i i i i i i i i iQ A T C A TC Q . 

Proof. In the analysis of the stability of the sliding motion (19), we choose the below 
Lyapunov function 

 
1

     0
0     

TN
i i i

i i i i

x P x
V

e Q e=

     
=      

     
  (22)

where 0iP >  and 0iQ > satisfy (20) for 1,  2,  . . .i N= . By getting the time derivative 
along the system state trajectory of MAIPS, we have 

1 1

1

      0      0
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T TN N
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i ii i i i i i
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≠
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Applying Lemma 1 to Equation (22), we have 
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(25)

where
1 1ˆ( 1)( )i i iNλ λ λ− −= − + , ( 1)i i Nρ λ= −

, ( ) ( )Χ = − + − T
i i i i i i i i iP A B J A B J P  and 

( ) ( )Χ = − + − T
i i i i i i i i iQ A T C A TC Q . 
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In addition, using the Schur complement, the LMI (20) is equivalent to the below 
inequality 

 

1

1

1 1

+ + [ ( ) ( )]               

ˆ     [ ] [ ( ) ]

N
T T

i i i i i i i i i j ji j ji ji j ji i i
j
j i

i N N
T T T T
i i i i i i i i i i i j ji ji j j ji j ji

j j
j i j i

PP PF F P H H H H P

P QQ Q F F Q H H H H

λ γ ν

ρ ν λ λ

=
≠

−

= =
≠ ≠

 Χ + − Λ − Λ Φ 
 

Ω = −  
 Φ Χ + + + + Λ Λ 
  



 





(26)

According to Equations (24) and (25), we obtain 

2
min

1

ˆ( ( ) ( ) )
N

i i i
i

V x tλ μ
=

≤ − Ω +   (27)

where the constant value 1 1 2

1
[( ) ]

N

i i i i
i

μ ν γ τ− −

=

= +   and the eigenvalue min ( ) 0iλ Ω > . 

Therefore, <0V is achieved with 
min

ˆ ( )
( )
i

i
i

x t
μ

λ
>

Ω
. Hence, the sliding motion (19) is 

asymptotically stable. □ 

4.3. Decentralized State Estimator Feedback Integral Sliding Mode Control (DSEFISMC) 
Design 

Previously, we designed the integral surface and proved the power system asymp-
totically stability in the sliding motion. Next, a continuous second-order DSEFISMC law 
is developed to reduce the chattering inherent in the first-order design. We start by defin-
ing the second-order sliding manifold [ ( )]i iS z t  such that the estimated system state tra-
jectories are forcefully driven to zero asymptotically, which is given as 

[ ( )] [ ( )] [ ( )]σ ε σ= +i i i i i i iS z t z t z t   (28)

and 

[ ( )] [ ( )] [ ( )]σ ε σ= +  i i i i i i iS z t z t z t   (29)

where 0iε >  is a positive constant. Using Equation (16) yields 

1
[ ( )] [ ( ) ( ) ( ) ( ( ) ( ))]

               ( ) ( ) [ ( )]ε σ

=
≠

= + + + −

− − +

    



N

i i i i i i i ij j i i i
j
j i

i i i i i i i i

S z t L A z t B u t H z t T y t n t

L A B J z t z t

  (30)

Based on the definition of the sliding surface and sliding manifold, the continuous 
DSEFISMC law for the MAIPS is known as follows 

 
1

1
( ) ( ) { ( ) [ ( )] ( )

( ( ) ( )) ( [ ( )])}

ε σ

δ

−

=
≠

= − + +

+ − −

  

 

N

i i i i i i i i i i j ji i
j
j i

i i i i i i i

u t L B L B J z t z t L H z t

LT y t n t sat S z t

 (31)

We propound a theorem to demonstrate the reachability of the estimated system state 
trajectories to the manifold in the following. 

Theorem 2. Consider Equation (6) with the continuous DSEFISMC law (30). Then, system state 
trajectory is directed towards the sliding manifold [ ( )]i iS z t  and once the trajectory hits the 
sliding manifold [ ( )]i iS z t  it remains on the sliding manifold thereafter. 
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Proof. A Lyapunov function is therefore, obtained: 

1
( ) [ ( )]

=

=
N

i i
i

V t S z t   (32)

Now using the time derivative of ( )V t  yields 

 

1

1 1
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S z t

L A B J z t z t
S z t L B J z
S z t1 1

1

) [ ( )] ( ) ( ( ) ( ))}
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[ ( )]
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≠
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+

 



  



N N

i i i i ij i i i i i
i j

j i

TN
i i

i i i
i i i

t z t L H z t LT y t n t

S z t L B u t
S z t

 (33)

Using the DSEFISMC law (30), Equation (32) yields 

1

N

i
i

V δ
=

≤ −   (34)

The above Equation implies that the system state trajectories reach the sliding mani-
fold [ ( )]i iS z t  and stay on it thereafter. □ 

5. Result Discussions 
In this segment, we simulate the performance of the MAIPS with the proposed state 

observer based on sliding mode control (SOboSMC) and the results are compared and 
discussed with the load frequency double integral sliding mode controller given in [23] 
and the sliding mode controller in combination with the extended state observer in [34]. 

5.1. Simulation 1 
In this simulation, the test was carried out in three cases and the parameters of the 

power network considered were the same as those in [23]. The one-line diagram of the 
MAIPS integrated with the wind plant is shown in Figure 3. 

Case 1. In this case, the initial values of the MAIPS are assumed to be nominal values 
at time zero. The load disturbances of the areas 1, 2 and 3 are given as 

1
0.01 . . d p uP MW=Δ

, 
2

0.015 . . d p uP MW=Δ , 
3

0.02 . . d p uP MW=Δ  at 1 s and the wind variations are neglected. 
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Figure 3. Diagram of a three-area power system integrated with a wind plant. 

The incremental frequency is displayed in Figure 4 and the tie-line power deviation 
is shown in Figure 5, whereas the control signal is given in Figure 6. 

 
Figure 4. Frequency deviation of three-area power system. 

 
Figure 5. Tie-line power of three-area power system. 
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Figure 6. Control signal of three-area power system. 

Remark 1. Under the assumed initial conditions of the MAIPS, the proposed SOboSMC acted 
quickly to converge the frequency error to zero at 3 s, with a maximum overshoot of 0.005 Hz as 
compared to the 6-s settling time and maximum overshoot of 0.08 Hz seen in [23]. This validates 
that the MAIPS performance is better when using the proposed SOboSMC. 

Case 2. This simulation was done with the MAIPS with and without wind turbines. 
The load disturbances of the areas 1, 2 and 3 were assumed to be the same as those in case 
1 and [23]. The parametric uncertainty is considered in the form of matched uncertainty ∆𝐴, which is expressed as 

1

      0               0               0                0         0
      0               0               0                0         0

2.26cos( )  2cos( )  - 2.604cos( )  3cos( )  0
      0           

A t t t tΔ = −
    0               0                0         0

      0               0               0                0         0

 
 
 
 
 
 
  

 where 1 2 3A A AΔ = Δ = Δ . 

The wind variation is shown in Figure 7. The frequency error with and without the 
wind plant can be seen in Figures 8 and 9, whereas the tie-line power error with and with-
out the wind farm are shown in Figures 10 and 11. For the MAIPS without wind farms, 
the response of the power network is better, pertaining to overshoot and settling time, and 
is also chattering-free in comparison with the design presented in [23]. Once more, the 
frequency transient is kept within the operational safety range, which is ±0.2 Hz for the 
safety of the power system frequency [36]. Therefore, the proposed approach shows good 
control performance for the LFC of an MAIPS with load disturbances, parameter uncer-
tainties and wind variations, without the loss of control accuracy. 
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Figure 7. Wind speed variation. 

 
Figure 8. Frequency deviation of three-area power system without a wind plant. 

 
Figure 9. Frequency deviation of three-area power system with a wind plant. 
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Figure 10. Tie-line power deviation of three-area power system without a wind plant. 

 
Figure 11. Tie-line power deviation of three-area power system with a wind plant. 

Remark 2. The LFC for the MAIPS with load disturbance and matched uncertainty can be seen 
in [23]. However, the above approach cannot be applied to an MAIPS with a wind turbine; therefore, 
this new approach is a better choice to handle the LFC in the MAIPS integrated with renewable 
plants. 

Case 3. The load change and the wind variation were the same as those in case 2. The 
parametric uncertainty was in the form of mismatched uncertainty in the system matrix 
and in the interconnected matrix [23] 

1

1

0 0 0 0
sin( ) 0 0 0 0

0 0 cos( ) cos( ) 0
0 0 0 0 cos( )

cos( ) 0 0 0 0

f
t

A t t
t

t

Δ 
 
 
 Δ =
 
 
  

 and 12

0 0 0 0 0.178cos( )
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0.296sin( )
0 0 0 0 0

t

H
t

 
 
 
 Δ =
 − 
  

  

We also assumed that 2 3 1H H HΔ = Δ = Δ  and 2 3 1A A AΔ = Δ = Δ . 
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Figures 12–15 represent the frequency and tie-line power error of the MAIPS with 
and without a wind turbine under the mismatched uncertainties, coupled with load dis-
turbance. The results indicate that the new approach is highly robust against power sys-
tem uncertainties and wind variation in comparison with [23]. 

 
Figure 12. Frequency deviation of three-area power system without a wind plant. 

 
Figure 13. Frequency deviation of three-area power system with a wind plant. 

 
Figure 14. Tie-line power deviation of three-area power system without a wind plant. 
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Figure 15. Tie-line power deviation of three-area power system with a wind plant. 

Remark 3. Even with load disturbances, wind variation and matched and mismatched parametric 
uncertainties, the results from Table 1 show that the proposed SOboSMC preserves the frequency 
of the MAIPS, which is better in terms of overshoot and settling time in comparison with [23]. 
Thus, the new controller is proven to be a preferred choice to cope with a power system with the 
above conditions. Unlike the approach given in [23], the system state variables are not required to 
be measured, so the proposed SOboSMC is much easier to apply to a large power network. The 
proposed SOboSMC is also intended to be applied to imperfect systems, which are mentioned in 
[37]. 

Table 1. Setting time and maximum overshoot of the proposed state observer based on sliding 
mode control (SOboSMC) and double-integral SMC [23]. 

Kind of Controller Proposed SOboSMC 
Double Integral SMC 

[23] 
Parameters ( )sT t  Max.O. S (pu) ( )sT t  Max.O. S (pu) 

1fΔ  3 35.8 10−− ×  7 0.06−  

2fΔ  3 36.5 10−− ×  7 0.07−  

3fΔ  3 311.5 10−− ×  7 0.07−  

5.2. Simulation 2 
In other to test the proposed SOBoSMC for the real MAIPS, a New England 39 bus 

power system (PS) was used. The configuration and parameters of the power system in 
this simulation were taken from [34]. 

In addition, the importance of integrating renewable energy with MAIPSs has been 
discussed in [32]. Therefore, we considered integrating wind energy with area 1 at bus 5 
and area 3 at bus 21 of the New England 39 bus PS. A single line diagram of the New 
England 39 bus PS integrated with a wind plant is shown in Figure 16. The proposed 
SOBoSMC was tested for the LFC of the New England PS with and without wind plants. 
The wind variation was assumed as shown in Figure 17 and the load disturbance was 
applied for the MAIPS as shown in Figure 18. On the other hand, the SMC combined with 
the disturbance observer was used to increase the damping ratio for the LFC of the New 
England PS under random loads, as given in [34]. However, the stability of the frequency 
and tie-line power of the PS were attained without wind variation and the controller was 
required to measure all the system state variables. IN addition, an observer-based SMC 
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used for the LFC of a New England PS was also seen in [32]. However, that controller 
suffered from chattering problems due to the first-order SMC used and the stability of the 
New England device was also achieved while neglecting wind disturbance. Therefore, 
there are doubts about the above approaches’ applications in the LFC of a real PS inte-
grated with renewable energies. 

 
Figure 16. Diagram of IEEE 39-bus integrated with wind plant. 

 
Figure 17. Wind speed variation. 
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Figure 18. Load variations. 

Therefore, the New England PS was simulated with and without wind plants to test 
the proposed continuous decentralized second-order SMC based observer. Figures 19 and 
20 illustrate the results of the frequency error and the tie-line power error of the New 
England PS without wind. With the use of system states estimated by the observer, the 
frequency maximum overshoot and settling time were comparatively lower than the re-
sults presented in [34]. This is evidence that the new approach has a higher damping ratio 
than the scheme in [34]. In addition, the proposed approach solved the chattering phe-
nomenon inherent in the first-order SMC presented in [32]. On the other hand, Figures 21 
and 22 display the results of the frequency deviation and tie-power error of the New Eng-
land PS with wind turbines. As seen in Figures 21 and 22, the MAIPS was also stable with 
good performance. 

 
Figure 19. Frequency deviation without wind plant. 
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Figure 20. Tie-line power deviation without wind plant. 

 
Figure 21. Frequency deviation with wind plant 

 
Figure 22. Tie-line power deviation with wind plant. 

Remark 4. An SMC based on the observer used for the LFC of the New England PS can be seen 
in [34]. However, there are two limitations of the above approach. The first is that the system state 
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variables need to be measured in order to provide feedback for the controller. The second is that the 
control suffers from the chattering problem inherent in the first-order SMC. In this approach, the 
state observer is used in the sliding surface and second-order sliding mode controller. Therefore, 
the two above limitations have been solved. 

6. Conclusions 
The need for the MAIPS integrated with wind plants is increasing day by day because 

of the need for efficient power generation. However, the wind variation problem associ-
ated with wind turbines can make MAIPS frequency unstable. Therefore, the LFC is im-
portant in order to regulate frequency and provide better power quality to consumers. In 
order to solve the above problem, a new LFC for an MAIPS integrated with wind plants 
using a state observer based on sliding mode, acting under a second-order time derivative, 
has been developed. The continuous decentralized sliding mode controller guarantees the 
control signal accuracy so that the performance of the MAIPS and the power quality are 
improved. In addition, the stability of the entire power network was demonstrated by 
means of the Lyapunov method based on the new LMI technique. The simulation results 
show that the frequency error and the tie-line power error rapidly converge to zero, with 
better settling time and overshoot when compared to existing designs. Furthermore, the 
proposed controller can handle with the wind variation because the results show less im-
pact on the power system frequency and tie-line power deviation. In order to verify this 
new approach with a real MAIPS, a New England PS with and without a wind plant was 
used and the results showed an improvement in the system performance with respect to 
maximum overshoot and settling time. Thus, the proposed approach is a better choice for 
the LFC of a real MAIPS with a wind plant. 
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