#### Chemosphere 276 (2021) 130154

Contents lists available at ScienceDirect

# Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

# Photocatalytic degradation of methyl orange dye by $Ti_3C_2-TiO_2$ heterojunction under solar light

Vu Quang Hieu <sup>a</sup>, Thanh Khoa Phung <sup>b, c</sup>, Thanh-Quang Nguyen <sup>d</sup>, Afrasyab Khan <sup>e</sup>, Van Dat Doan <sup>f</sup>, Vy Anh Tran <sup>g, h, \*</sup>, Van Thuan Le <sup>h, i, \*\*</sup>

<sup>a</sup> NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, Viet Nam

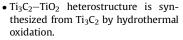
<sup>b</sup> Department of Chemical Engineering, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam

<sup>c</sup> Vietnam National University, Ho Chi Minh City, Viet Nam

<sup>d</sup> Faculty of Technology, Van Lang University, Ho Chi Minh City, Viet Nam

e Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin Prospect 76,

Chelyabinsk, 454080, Russian Federation


<sup>f</sup> The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam

- <sup>g</sup> Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam
- <sup>h</sup> Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam

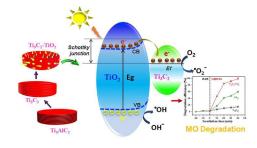
<sup>1</sup> Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam

#### HIGHLIGHTS

## G R A P H I C A L A B S T R A C T



- In-situ transformation of TiO<sub>2</sub> leads to obtain Ti<sub>3</sub>C<sub>2</sub>—TiO<sub>2</sub> heterostructures.
- Ti<sub>3</sub>C<sub>2</sub>-TiO<sub>2</sub> photocatalyst exhibits a significant efficiency for MO degradation.
- The proposed MO photocatalytic mechanism toward Ti<sub>3</sub>C<sub>2</sub>-TiO<sub>2</sub> composite is illustrated.


#### ARTICLE INFO

Article history: Received 28 December 2020 Received in revised form 22 February 2021 Accepted 1 March 2021 Available online 5 March 2021

Handling Editor: Derek Muir

Keywords:

Ti<sub>3</sub>C<sub>2</sub>-TiO<sub>2</sub> heterojunction



### ABSTRACT

Photocatalytic activity is a feasible solution to tackle environmental pollution caused by industrial pollutants. In this research,  $Ti_3C_2$ — $TiO_2$  composite with a unique structure was fabricated successfully via a hydrothermal method. Especially, the *in-situ* transformation of  $TiO_2$  from  $Ti_3C_2$  MXene creates an intimate heterostructure, which leads to prolonging separation and migration of charged carriers. Thus, this  $Ti_3C_2$ — $TiO_2$  composite enhances effectively methyl orange (MO) degradation efficiency (around 99%) after 40 light-exposed minutes. Besides, the optimal concentration of MO solution was estimated at 40 mg/L and  $Ti_3C_2$ — $TiO_2$  photocatalyst also exhibited good stability after five runs. Moreover, the radical trapping test and the MO photodegradation mechanism over  $Ti_3C_2$ — $TiO_2$  system were also demonstrated.

 $\ast$  Corresponding author. Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam.



霐

Chemosphere

<sup>\*\*</sup> Corresponding author. Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam.

*E-mail addresses:* vqhieu@ntt.edu.vn (V.Q. Hieu), ptkhoa@hcmiu.edu.vn (T.K. Phung), quang.nguyen@vlu.edu.vn (T.-Q. Nguyen), khana@susu.ru (A. Khan), doanvandat@iuh.edu.vn (V.D. Doan), trananhvy@duytan.edu.vn (V.A. Tran), levanthuan3@duytan.edu.vn (V.T. Le).